a2 United States Patent

Glew et al.

US009471373B2

US 9,471,373 B2
*QOct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

ENTITLEMENT VECTOR FOR LIBRARY
USAGE IN MANAGING RESOURCE
ALLOCATION AND SCHEDULING BASED
ON USAGE AND PRIORITY

Inventors: Andrew F. Glew, Hillsboro, OR (US);
Daniel A. Gerrity, Seattle, WA (US);
Clarence T. Tegreene, Bellevue, WA

(US)
Assignee: Elwha LLC, Bellevue, WA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 690 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/200,556

Filed: Sep. 24, 2011

(Under 37 CFR 1.47)

Prior Publication Data

US 2013/0081043 Al Mar. 28, 2013
Int. CL.

GO6F 9/455 (2006.01)

GO6F 9/46 (2006.01)

GO6F 9/48 (2006.01)

GO6F 3/12 (2006.01)

GO6F 9/50 (2006.01)

GO6F 9/38 (2006.01)

GO6F 9/30 (2006.01)

U.S. CL

CPC GO6F 9/4881 (2013.01); GOGF 3/1263

(2013.01); GOGF 9/30076 (2013.01); GOGF
9/3836 (2013.01); GOGF 9/50 (2013.01);
GOGF 9/5011 (2013.01); GOGF 9/5027
(2013.01); GOGF 9/5094 (2013.01); GO6F
2209/504 (2013.01); GOGF 2209/507
(2013.01); GOGF 2209/5021 (2013.01); Y02B
60/142 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,087,856 A 5/1978 Attanasio
4,525,599 A 6/1985 Curran et al.
5,437,032 A 7/1995 Wolf et al.
5,623,637 A 4/1997 Jones et al.
6,000,328 A 12/1999 Drake
6,057,598 A 5/2000 Payne et al.
6,145,064 A 11/2000 Long et al.
6,154,741 A 11/2000 Feldman
6,199,055 Bl 3/2001 Kara et al.
6,205,544 B1 3/2001 Mills et al.
6,584,488 Bl 6/2003 Brenner et al.
(Continued)
FOREIGN PATENT DOCUMENTS
WO WO 01/99075 A2 12/2001

OTHER PUBLICATIONS

Adya et al.; “FARSITE: Federated, Available, and Reliable Storage
for an Incompletely Trusted Environment”; 5" Symposium on
Operating Systems Design and Implementation; bearing a date of
Dec. 2002; pp. 1-14; Boston, MA.

(Continued)

Primary Examiner — Meng An
Assistant Examiner — Bradley Teets

(57) ABSTRACT

An embodiment of an information handling apparatus can
use an entitlement vector to specify resources used by an
object of a plurality of multiple objects. The information
handling apparatus can include logic for issuing a hint
instruction based on the entitlement vector for usage in
scheduling the resources.

39 Claims, 24 Drawing Sheets

INFORMATION HANDLING APPARATUS

182
INSTRUCTION UNIT Py
| e [] e o
77 SYSTEM
INSTRUCTIONS [Procraus]
‘THREAD POOL STORAGE
127 164) DEVICE
PROCESSOR
110 Wl‘ 156 Q—hl KEYBOARD
110 | 104
ENTITLEMENT VECTOR DISPLAY
110 - EET
wor{ _sowouer] i
110
116/ CO“RE CDZRE CO:!RE CO‘RE SOFTWARE
COMP(S)
110 I R\ _ENTITLEMENT
MEMORY 154
INFORMATION
LIBRARY MEMORY BLOCK FROM OP RES,
— 15 MEMORY PAGE \—
FUNCTION COMPONENT CAPABILITIES
52 —J MEMORY ELEMENT J 144
OBJECT 102 R ——

T
148 110

(120

US 9,471,373 B2

Page 2
(56) References Cited 2005/0004924 Al 1/2005 Baldwin
2005/0060710 Al 3/2005 Kush
U.S. PATENT DOCUMENTS 2005/0081207 Al 4/2005 Hoflehner et al.
2005/0125613 AL* 6/2005 Kimcccoovrvrrrren. GO6F 9/3844
6,654,745 B2 11/2003 Feldman] 711/125
6,996,547 Bl 2/2006 Tugenberg et al. 2005/0125793 Al 6/2005 Aguilar, Jr. et al.
7.035.277 Bl 4/2006 Batcher 2005/0138074 Al 6/2005 O’Connor et al.
7.054.190 B2 5/2006 Hanyu et al. 2005/0160428 A1 7/2005 Ayachitula et al.
7.069.447 Bl 6/2006 Corder 2005/0171903 Al 8/2005 Yacobi et al.
7093250 Bl 82006 Rector 2005/0177596 Al 82005 Wu et al.
7.107.176 B2 9/2006 Henry et al. 2005/0195975 Al 9/2005 Kawakita
7.124.170 B1 10/2006 Sibert 2005/0213751 Al 9/2005 Apostolopoulos et al.
7.165.150 B2 1/2007 Alverson et al. 2005/0232415 Al 10/2005 Little et al.
7.191.185 B2 3/2007 Dweck et al. 2005/0268075 Al 12/2005 Caprioli et al.
7921600 B2 5/2007 Hara et al. 2006/0005082 A1 1/2006 Fossum et al.
7.284.000 B2 10/2007 Kuehr-McLaren et al. 2006/0021054 Al 1/2006 Costa et al.
7379999 Bl 5/2008 Zhou et al. 2006/0025952 Al 2/2006 Buhr
77305414 B2 7/2008 Le et al. 2006/0161715 A1 7/2006 Hamaguchi
7.502.046 B2 3/2009 Perkins cf al. 2006/0161978 Al 7/2006 Abadi et al.
7,533,242 B1* 5/2009 Moll ..ccccooomrrnrocrr. GOGF 12/0862 2006/0184767 Al 82006 Le et al.
1213 2006/0289659 Al 12/2006 Mizushima
7.533.273 B2 5/2009 Patariu et al. 2007/0022287 Al 1/2007 Beck et al.
7.549.054 B2 6/2009 Brodie ef al. 2007/0050477 Al 3/2007 Isaacs
7,594,111 B2 9/2009 Kiriansky et al. 2007/0079304 Al 4/2007 Zheng et al.
7620941 B1 11/2009 Leventhal 2007/0101433 Al 5/2007 Louch et al.
7644162 Bl 1/2010 Zhu et al. 2007/0240215 A1 10/2007 Flores et al.
7:676:578 Bl 3/2010 Zhu et al. 2007/0250837 Al* 10/2007 Herington et al. 718/105
7,708,195 B2 5/2010 Yoshida et al. 2008/0005586 Al 1/2008 Munguia
7,757,282 B2 7/2010 Pandit et al. 2008/0028467 Al 1/2008 Kommareddy et al.
7,844,733 B2 11/2010 Betts et al. 2008/0046997 Al 2/2008 Wang
7.861.305 B2 12/2010 Meclntosh et al. 2008/0052539 Al 2/2008 MacMillan et al.
7’870’610 Bl 1/2011 Mitchell et al. 2008/0052541 Al 2/2008 Ginter et al.
7.873.998 Bl 1/2011 Wilkinson et al. 2008/0072075 Al 3/2008 Kohiyama et al.
7.877.585 Bl 1/2011 Coon et al. 2008/0104004 Al 5/2008 Brave et al.
7953.986 B2 52011 Lee 2008/0114990 Al 5/2008 Hilbert et al.
7958370 B2 6/2011 Hirai et al. 2008/0127335 A1 52008 Khan et al.
7058558 Bl 6/2011 Leake et al. 2008/0168279 Al 7/2008 Kanai
8’022’724 Bl 9/2011 Jenkins. TV 2008/0184016 Al 7/2008 Erlingsson et al.
8:099:574 B2 1/2012 Savaga(’)nkar et al. 2008/0222397 Al 9/2008 Wilkerson et al.
8.136.158 Bl 3/2012 Sehr et al. 2008/0222532 Al 9/2008 Mester et al.
$.146.106 B2 3/2012 Kim et al. 2008/0250216 A1 10/2008 Kershaw et al.
8281388 Bl 10/2012 Sobel et al. 2008/0256346 A1 10/2008 Lee et al.
8.286.250 Bl 10/2012 Le et al. 2008/0263663 Al 10/2008 Ide et al.
8312.509 B2 11/2012 Zimmer et al. 2008/0276317 Al 11/2008 Chandola et al.
8381,192 Bl 2/2013 Drewry et al. 2008/0279371 Al 11/2008 Lee et al.
8,397,238 B2 3/2013 Venkumahanti et al. 2008/0288785 Al 11/2008 Rao et al.
8.473.754 B2 6/2013 Jones et al. 2008/0301467 Al 12/2008 Saito
8’510’827 Bl 8/2013 Leake et al. 2008/0313482 Al 12/2008 Karlapalem et al.
8516583 B2 82013 Thomas et al. 2008/0320565 Al 12/2008 Buch et al.
8,555,390 B2 10/2013 Thiebeauld de la Crouee et al. 2009/0006755 Al 1/2009 Illikkal et al.
8,621,144 B2 12/2013 Eschmann et al. 2009/0007125 Al 1/2009 Barsness et al.
8,675,868 Bl 3/2014 Yearsley et al. 2009/0028135 Al 1/2009 Mantripragada et al.
8.683.581 B2 3/2014 Lefloch 2009/0038014 Al 2/2009 Force et al.
8.688.583 B2 4/2014 Boccon-Gibod et al. 2009/0063824 Al 3/2009 Leaback et al.
8,694,947 Bl 4/2014 Venkataramani et al. 2009/0070338 Al 3/2009 Spitzig et al.
8,732,431 B2 5/2014 Culley et al. 2009/0083520 Al 3/2009 Kanemura
2002/0040420 Al 4/2002 Yamauchi et al. 2009/0106563 Al 4/2009 Cherpantier
2002/0075844 Al 6/2002 Hagen 2009/0144557 Al 6/2009 Sutton
2002/0141577 Al 10/2002 Ripley et al. 2009/0172056 Al 7/2009 Pradhan et al.
2002/0142833 Al 10/2002 Tsuchida et al. 2009/0172686 Al 7/2009 Chen et al.
2002/0152212 Al 10/2002 Feldman 2009/0183263 Al 7/2009 McMichael et al.
2002/0156939 Al 10/2002 Armstrong et al. 2009/0187743 Al 7/2009 Greenhalgh
2002/0166058 Al 11/2002 Fueki 2009/0187771 Al 7/2009 McLellan, Jr.
2003/0046238 Al 3/2003 Nonaka et al. 2009/0210881 Al 82009 Duller
2003/0084308 Al 5/2003 Van Rijnswou 2009/0222910 Al 9/2009 Le Bihan et al.
2003/0088759 Al 5/2003 Wilkerson 2009/0265712 Al* 10/2009 Herington 718/103
2003/0149869 Al 8/2003 Gleichauf 2009/0282474 Al 11/2009 Chen et al.
2003/0159070 Al 8/2003 Mayer et al. 2009/0288090 Al 112009 Ujibashi et al.
2003/0182436 Al 9/2003 Henry 2009/0320129 Al 12/2009 Pan et al.
2003/0187974 Al 10/2003 Burbeck et al. 2009/0320136 A1 12/2009 Lambert et al.
2003/0188132 Al 10/2003 Keltcher et al. 2009/0327718 Al 12/2009 Hirai
2004/0054925 Al 3/2004 Etheridge et al. 2010/0017638 AL* 1/2010 GhOSE .vvooevrvvcrrirnann. 713/324
2004/0088691 Al 5/2004 Hammes et al. 2010/0042824 Al 2/2010 Lee et al.
2004/0116183 Al 6/2004 Prindle 2010/0131957 Al 5/2010 Kami
2004/0117639 Al 6/2004 Mowery 2010/0165991 Al 7/2010 Veal et al.
2004/0117790 Al 6/2004 Rhine 2010/0191349 Al 7/2010 Munaga
2004/0153318 Al 8/2004 Chamberlain 2010/0269168 Al 10/2010 Hegli et al.
2004/0199763 Al 10/2004 Freund 2010/0281273 Al 11/2010 Lee et al.
2004/0236958 Al 11/2004 Teicher et al. 2010/0299305 Al 11/2010 Laxman et al.

US 9,471,373 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0318998 Al
2011/0029140 Al
2011/0066896 Al
2011/0072292 Al
2011/0129024 Al
2011/0131402 Al
2011/0131550 Al
2011/0131658 Al
2011/0138124 Al
2011/0138473 Al
2011/0179176 Al
2011/0202927 Al
2011/0289586 Al
2011/0296440 Al
2011/0307382 Al

12/2010 Golla

2/2011 Jordan et al.

3/2011 Ebina et al.

3/2011 Khawand et al.

6/2011 Karthik et al.

6/2011 Mittal

6/2011 Burckhardt et al.

6/2011 Bahl

6/2011 Hill et al.

6/2011 Yee et al.

7/2011 Ravichandran et al.

8/2011 Miloushev et al.
11/2011 Kc et al.
12/2011 Laurich et al.
12/2011 Siegel et al.
2011/0314254 A1 12/2011 Smriti et al.
2011/0320788 Al 12/2011 Assarpour
2011/0320793 Al1* 12/2011 Bell et al.cccovvevan. 712/240
2012/0079492 Al 3/2012 Chambliss et al.
2012/0102489 Al 4/2012 Staiman et al.
2012/0110292 Al 5/2012 Martini
2012/0159183 Al 6/2012 Adams et al.
2012/0179952 Al 7/2012 Tuyls et al.
2012/0185863 Al* 7/2012 Kustic et al.cccoevnennn 718/104
2012/0210325 Al 8/2012 de Lind Van Wijngaarden et al.
2012/0221591 Al 8/2012 Yerneni et al.
2012/0233698 Al 9/2012 Watters et al.
2012/0255018 Al 10/2012 Sallam
2012/0255021 Al 10/2012 Sallam
2012/0265975 Al 10/2012 Kimelman
2012/0266243 Al 10/2012 Turkulainen
2012/0278903 Al 11/2012 Pugh

2013/0024867 Al* 1/2013 Glew etal. ..o 718/104
2013/0081039 Al* 3/2013 Glewetal.coeee. 718/103
2013/0086687 Al 4/2013 Chess et al.

2013/0111489 Al* 5/2013 Glew et al.ccc... 718/103

*

2013/0111491 Al
2013/0246605 Al
2013/0305243 Al
2014/0245449 Al

5/2013 Glew et al.

9/2013 Mahadik et al.
11/2013 Hiki

8/2014 Powell et al.

718/104

OTHER PUBLICATIONS

Kolbitsch et al.; “Extending Mondrian Memory Protection”; Infor-
mation Systems and Technology Panel (IST) Symposium, Tallinn,
Estonia; bearing a date of Nov. 22-23, 2010; pp. 10-1 through 10-18
and 1 Report Documentation Page; NATO-OTAN.

Stone, Harold S.; “A Logic-in-Memory Computer”; IEEE Transac-
tions on Computers; bearing a date of Jan. 1970; pp. 73-78.
Abadi et al.; “Control-Flow Integrity: Principles, Implementations,
and Applications”; bearing a date of Nov. 1, 2004; pp. 1-33.
Kiriansky et al.; “Secure Execution Via Program Shepherding”;
Proceedings of the 11” USENIX Security Symposium; bearing a
date of Aug. 2002, created on Dec. 9, 2013; pp. 1-16 ; San
Francisco, CA.

Bird et al.; “Lighthouse: Hardware Support for Enforcing Informa-
tion Flow Control on ManyCore Systems”; bearing a date of 2008
(as provided by examiner); 10 pages.

Clause et al.; “Dytan: A Generic Dynamic Taint Analysis Frame-
work”; ISSTA ’07; bearing a date of Jul. 9-12, 2007; pp. 196-206;
ACM.

Ho et al.; “Practical Taint-Based Protection using Demand Emula-
tion”; EuroSys ’06; bearing a date of Apr. 18-21, 2006, 13 pages;
ACM.

Newsome et al.; “Dynamic Taint Analysis for Automation Detec-
tion, Analysis, and Signature Generation of Exploits on Commodity
Software”; Carnegie Mellon University Research Showcase; bear-
ing a date of Jan. 1, 2005; 18 pages.

Schwartz et al.; “All You Ever Wanted to Know About Dynamic
Taint Analysis and Forward Symbolic Execution (but might have
been afraid to ask)” ; 2010 IEEE Symposium on Security and
Privacy; bearing a date of 2010; pp. 317-331; IEEE.

Song et al.; “BitBlaze: A New Approach to Computer Security via
Binary Analysis”; ICISS 2008; bearing a date of 2008; pp. 1-25;
Springer-Verlag Berlin Heidelberg.

Yin et al.; “Panorama: Capturing System-wide Information Flow for
Malware Detection and Analysis”; CCS *07; bearing a date of Oct.
29-Nov. 2, 2007; pp. 116-127; ACM.

Zeldovich et al.; “Hardware Enforcement of Application Security
Policies Using Tagged Memory”; bearing a date of 2008 (as
provided by examiner), printed Feb. 7, 2013; pp. 1-16; located at:
static.usenix.org/events/osdi08/tech/full__papers/zeldovich/
zeldovich html/.

Zhang et al.; “Neon: System Support for Derived Data Manage-
ment”; VEE ’10; bearing a date of Mar. 17-19, 2010; 12 pages;
ACM.

“Instruction Set”; Wikipedia; bearing a date of May 15, 2010; pp.
1-10; located at: en.wikipedia.org/wiki/Instruction_set.

Liu et al.; “Adaptive Entitlement Control of Resource Containers on
Shared Servers”; bearing a date of 2005; pp. 163-176; IEEE.

Liu et al.; “Optimal Multivariate Control for Differentiated Services
on a Shared Hosting Platform”; Proceedings of the 46" IEEE
Conference on Decision and Control; bearing a date of Dec. 12-14,
2007; pp. 3792-3799; IEEE.

Wang et al; “AppRAISE: Application-Level Performance Manage-
ment in Virtualized Server Environments”; bearing a date of Dec.
2009; pp. 240-254; vol. 6, No. 4; IEEE.

“Opcode”; Wikipedia; bearing a date of Oct. 26, 2014; pp. 1-2;
located at: en.wikipedia.org/w/index.php?title=Opcode&oldid=
175723708.

Chen et al.; “Log-Based Architectures for General-Purpose Moni-
toring of Deployed Code”; bearing a date of Oct. 21, 2006; 3 pages;
ACM.

Realtime Privacy Monitoring on Smartphones; located at
appanalysis.org; (retrieved on Oct. 8, 2015) created on Dec. 2, 2015;
pp. 1-2.

Enck et al.; “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones”; Proceedings of the
9% USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), Oct. 2010. Vancouver, BC.; created on Dec. 2,
2015; pp. 1-15.

* cited by examiner

US 9,471,373 B2

Sheet 1 of 24

Oct. 18, 2016

U.S. Patent

S310A0 03X3) |

{

Vi "Old

801

7

804

A

8cl
134" LEL
(44" 9cl
(A 4" el
0] 4% 121"
6¢el eel

S304N0S3Y TVNOILVYH3dO
444

>3

y

E NOILONYLSNI LNIH
1425

HOLO3IA INSWITLILNT

1415t
(AN .m_ 193ra0 _

144

___ SAS ONILVYH3dO —\\
___ H37dNOD _
___ ra0 3¥YML40S _
___ §S300¥d _

[SNOILONNS >m<mm_.__\
[STIvO Advdan
[AYVHEIT HYOMLIN H1

SAIvHaIN

LSNOILONYLISNI |
vSI

AHOWIN

el
L€

" GZl
oet _ ayvo 03AIA
174"
oLl ;__ Qyvo aNNos _
f mﬁws
671 3YNLOILHOYY
el ayvmauv
wmw i _ MAYVH _
gy A|_3LNI YHOMIIN
m:__wg
0zl Al THLO HHOMLIN
f wi_m MGAH SOIHJVYO _
(XA

orl,

“S3Iniavavo

I

(¥4

S304N0OS3Y NIVLI3OSY — JI1901 | 1€

901,
_ INIH 3NSSI - 21901

1NIWNOXIANI NOILNDO3IX3

0417

INIWIOVNVIN AHOWIN

9t ___ ¥0SS3004d _

S3DUNOS3Y TVIIOO N TVIISAHL

*~001

US 9,471,373 B2

Sheet 2 of 24

Oct. 18, 2016

U.S. Patent

dl old

oLl]
301A30 P U _
310W3Y _ L
0Z1-
INIWI I AMOWIW
ObL &
T 39vd ANOWIN | gy,
< » 20 F\E 103rd0 _
lad’ LNIWI13 AMOWIW ¢st
— SIEEvass L ININOJINOD [gg i NOILONNA
310W3Y 39vd AHOWIN 5011 AdvYEN
4y Y0018 AHOW3W
S34 4O WON4 AHOWNIN 0079 AHOW3AN
S)awoo |, y| NOLLYWHOANI JLYIOANON AHOW3W 3ULVIOA
JUVYMLA0S N pel AMOWIW
\r 'y
pR—— | NEWELING 3
33vMmaavH | .
> .E NOILONMLSNI LNIH _
22 | sunaNownoaxa | | viL
oL oL | 90103 INFWFTLINT | N
QUVOBAIN voL~ =
< 951 $5300¥d)
AOVIS ovl,
30IA30 1304 > | S30uN0S3Y NIVLM3OSY - 01901 | SNOILONYLSNI
3OVHO0LS T s
)
SWYN90Yd | | N - Vsl
s || sumisiony || | ebb e _ LINN NOILONYLSNI
ONILYMIAO 001~ ¥0SSI00NUd
SNLYYYddY ONITANYH NOILYIWHO NI

U.S. Patent Oct. 18, 2016 Sheet 3 of 24 US 9,471,373 B2

INFORMATION HANDLING APPARATUS

116
INSTRUCTION UNIT PROCESSOR
A | LOGIC - ISSUE HINT |
<
106
INSTRUCTIONS | LOGIC - ASCERTAIN RESOURCES |
T
57 146
- | RESOURCE ALLOCATION LOGIC |
11 0 K1 58
REGISTERS PROCESS _Ji~156
110 | 104
TITLEMENT VECTOR
) ENTITLEMENT VECTO »
10 | HINT INSTRUCTION m
| ExecuTioN UNITS |
110
MEMORY
VOLATILE MEMORY
MEMORY BLOCK
LIBRARY
MEMORY BLOCK [FuncTion J™ 150 comPoNENT |
MEMORY PAGE 152
MEMORY ELEMENT [ossEcT ||T~1 02
L9
148 ™ MEMORY PAGE
110 H MEMORY ELEMENT—"]
- 120
100 " ENTITLEMENT
154
INFORMATION
FROM OP RES
CAPABILITIES
110 110, 110 N0, 144
COMPUTER COMPUTER COMPUTER COMPUTER
LOGIC LOGIC IT.OGIC | | LOGICJ
5

Gl

DATA DATA DATA DATA
SOURCE SOURCE SOURCE SOURCE

FIG. 1C

US 9,471,373 B2

Sheet 4 of 24

Oct. 18, 2016

U.S. Patent

oLl
301A30 ¢ uy ol
ETEL oz 8yl
“ » NOFE 193rg0
ad NSN3 AHOWIW ZS1
N:mm_::_mié 239vd AJOWNIN AN3NOJIWOD [}, il NOILONNA
S3Y4 4O WOou4 2019 AHOWAW Advdan
oLl NOILYWHOANI
301A30 | vSl : . AHOWIW
aLonay INIWTTLIINT oLl
(8)dwoo | ; s > 3
JUYMLA0S N 3400 || 3800 || 3109 || 3500 Lot
©301A30 [_ ¥31INA3HIS 091
FuvmauvH [> 5,
ELUI NOILINYLSNI LNIH _ m:u_: NOLLNO3X3
ze” oLl
_><._n_m_n_ T »> _ HOLD3A INFWITLILNT
oL~ —0Ll
QUYOSAIN fe—> mmTE $5300¥d oLl
* > ¥0SS300Nd .
30I1A3Q t oL 4N
JOVHOLS 100d av3yHL L
SNVY90Nd [NHL Joeef €HL |[ZHL][1HL |[oH1] SNOILONYLSNI
W3LSAS i . T 7 ! T
ONILYH3dO 001~ N IN ool © b e) Vsl
NSVL v_w<.hm3m30v_m<._. ASVL S)dl LINN NOLLONYLSNI

SN1LvHVYddY ONITANYH NOILYINJO NI

US 9,471,373 B2

Sheet 5 of 24

Oct. 18, 2016

U.S. Patent

8¢c¢
LET
9e¢d
GEC

WON3Hd SY3an
Eve

[A44
(344

JHNLVHIdNTL

{

SLINIVYLSNOD AN3HHND

7

341 L1ve JOVLI0A

y

S310AD 03x3

AON3ND3AS

V¢ Old

SNO¥YL0313 80¢

80¢

___ SAS ONILVY3dO _\\
___ ¥3UdW0D _
___ rao 34vML40S _

ze2
1€Z

44
oz l___ ayvo 03AIA
vic
b1z ;__ auvo aNnos
[mwm_]~_
sz [3UNLOILIHOYY
NNN,_= JUVMANYH _
mNMNN
| o2 ;__ 4LNI YHOMLIN _
mvm__}
oze THLO WHOMLIN
27 A MQH SOHdWO
NFNE ndo _
Lce
o&.__m ¥0SSIO0Hd _

S32UNOS3Y TVIIOOVYIISAHI

ove 1474 <
6ET £€T)
S30¥NO0S3Y TYNOILYYIJO [SNOILONNS A¥vHaIN]
4% [sSTivoAuvaEn H
s . [A¥vHEIT HOMLIAN H1
b1z NOILONYLSNI LNIH S3vyan
JOLO3IA LNIWITLIINT [SNOILONHLSNI | | |
b0z VS|
Now% . 4L AHONIW
8s¢, ~831LN18YdY0 | Fzms_mo,qz,_\s_ Jrep—
21907 NOILYOOTIV 304N0SIY | [« >
ove, 0iLc
S30HNOS3Y NIVLYIOSY - 21901
80¢,
LNIH 3NSSI - 21901
LNIWNOYIANT NOILLNOIX3

*~002

US 9,471,373 B2

Sheet 6 of 24

Oct. 18, 2016

U.S. Patent

dc¢ 9ld

IN3ITO
otz” ‘Hm_—_——————ﬁuuuv
IN3ND

oy’
vre
SALNIVIVYO

434
S34 dO WOodd

NOILYIWHOLNI

1214
INIANTTLLINT

N3O /

oz’

oLz’ 002

ole
ININTTT AHOWIN

JOVd AHOW3IN

8¥2

b

NON(E 103rd0
A4
1IN3INOdWOD _omN = NOILONNA

Advadll

00719 AHOW3IN

AHOWIN

0zz” gz 4

b]

_ E NOILONYLSNI LNIH _
vie

_ HO1I3A LNJWITLILNT _

A
omNJm §S3004d

8sc,

| 91907 NOILYOOTTY 308N0STY |
o,

| s30unos3d NIvLN30SY - 01907 _
90z,

_ INIH 3NSSI - 21907 _

d0SS3004d

SNLYHVddY ONITANVH NOILLYWHOANI

324N0S
viva

-
oLc

30UNOS
viva

oic

oie

324N0S
viva

US 9,471,373 B2

Sheet 7 of 24

Oct. 18, 2016

U.S. Patent

30iA3d
J10W3Y

olc”

301A30
310W3d

<

(S)awoo |,

444
S31LN18vdvYO

[4%4

S34 4O WON
NOILYINHOANI

14574 _
ANIWITLILNT

%
v

FYMLI0S [

(8)321A3a

JHYMANVH |

7

(444

AV1dSIq [« b

J¢ 9Old

QIVO8AIM

4
A

30IA3Q
JOVHOLS

SWYHO0Ud | |

W3LSAS
ONILYY3d40

002

——————————————
b £ Z L
34090 || 3500 || 3900 || 3802 (1]%
LN3W313 AYOW3W
_ ¥31Na3HIsS _ 3OVd AMONIW | g7
092~ , >
SN.E NOLLONYHISNI INH | NQN,E 10arg0 |
HOL193A INIWI1LIENT (4°14
vom_\ _ _ IN3INOJWOD _(omm _ NOILONNA _
9s¢e. E $S3904d Ayvyd
852, il 30078 AHOWIN
_ 219071 NOILYD0 1TV 308N0STY _ THOWaW
9ve, oz’
_ S3DHNOS3Y NIVLYIISY - D190 _
902, [sLNNNolLNDaXa |
_ 1NIH 3nSSI - 2I901 _ 01z’
Y0SS300Nd AJVLS
T 3 | 1¥0d |- 012
100d QvaYHL | 9 SY3ILSIOTY
[NHL [eee] €HL || ZHL |[tHL |[OH. | Iz,
p
\. N. 0L | | [SNOILONYELSNI
N I b
MSVL || Msvl ASVL | HSVL |55 VSl
pizs” 3IN3ano LINN NOILONYLSNI

SNLVaVddy ONINANVYH NOILYINYO NI

US 9,471,373 B2

Sheet 8 of 24

Oct. 18, 2016

U.S. Patent

8ce
WON3Hd SYaw

LEE
oce
GEE
vee

£ee
S30UNOS3Y TVYNOILYHIJO

eve
(A%
(3%
ove
135

JINLVHIdNEL
SINIVYLSNOD IN348ND
3417 11ve JOVLIOA

WNSNOD L1vdg H3IMOd

SI1OAD 03X3T) |

AON3NDIHL

{

Ve Old

SNOY19313 80€

7

80€

ZLE

-

y

NOILONHLSNI LNIH

142

(v}

dO1I3A INJWITLILNT

1401 %l
Nom(E 103rao _

8S€,

142>

___ SAS ONILYY3dO _\\
___ d371dWOD _
___ 90 IH4YMIL40S _
[sszooua I

[SNOILONNI AdvyaH
[S1Iv0 Advdan
[A¥vH8IT ¥3OMLIN H
S3ldvyan
SNOILONYLSNI
vSI]
AYOWIW

N\

\

zce
LE€

" GZ¢

oce l___ ayvd 03aIA
vZe

b1 _ ayvyo aNNoS

mmm(___ JYNLOILIHOYYN _
\mNm 4_

Nmmm VYMAYYH _
R e
| gpe | LNINOMLIN

6lLE
oz ‘___ THLO MHOMLIN _

81¢
)26 ;__ MAH SOIHAYYD

“S3iImavavo

01907 NOILYJ0T1V 304N0Ss3d <
90€,
1NIH 3NSSI— 21901

INIWNOYIANT NOILNDO3X3

L

oLg7]

m_‘m_z
4>

1
| iNawaovnvi Aowan | 9LE

Ndo
H40OSS300¥d

$324N0S3Y TWIIO0 N VIISAH

*~00¢

US 9,471,373 B2

Sheet 9 of 24

Oct. 18, 2016

U.S. Patent

Sddv

133HS

Qv3uds R E TAX 1AaL

SNOILVOIddY ONY S¥3SN IN3IND

OLE
oLe

d¢ Ol

\oom

13
viva

H3IAY3IS

vivad

334N0s

EITNEREE]PIN

oLe”

LOLE

Javm

A

N A,

SALMNGYAYD N\
(A%
S34 4O INOHH

NOILYWHOANI N\,

L£°1>

INIWIILNT

9le,

.E NOILONYLSNI LNIH _
1 4%

_ HOLD3A INFWILILNT _

140} %
omm(m $S390¥d _

85S¢,
_ S3OUNOSTY NIVLHIOSY — O_OO._J

advH

zee”

Y¥3LNdWOD A\oﬂ.\v

90¢, i
_ INIH 3NSSI - 21901 ;

d0SS3004d

8ve

b

Nomlmm 103rga0 _

451
__ ANINOJINOD [oge =_ NOILONNA _

Advdan

A2078 AHOW3N

AJOW3IN

oce’

oLe
N

JXA>

b

SNOILONYLSNI

Vsl
LINN NOILONYLSNI

SN1LVHVddV ONITANYH NOILYINHOANI

US 9,471,373 B2

Sheet 10 of 24

Oct. 18, 2016

U.S. Patent

e NEE[S
SILMIEvdvo Sdd¥ | | quangg | | TVW3 | | WX | | LX3L 3¢ 914
Nrmmm 4 WOMA SNOILYDINddY ANV S¥3SN INJND
4
NOLLVWHOANI Y OL€ " A I I 7 (00€
1 2°1
INTFWIILIINT \ ¥ ¢ z !
oLe 3409 || 3800 || 3802 || 3800 8Ye.
d37NA3IHOS CO€. m_ 1793rgo _
139 09e” NOLLONRLSNI LNIH ___ _.\Nmm_E _
viva NAANTS bLe ININOJIWOO [gce I NOILONNA
J0MNOS d31VH303 [y _ JOLO3A INFWTTLIINT Advaal
vivd — yoe~ H0079 AHOWaW
oLe 9G¢. E SS3008d _ AHOW3N
8g¢, oze” oLe”
f 219071 NOLLYOOTIV 30HN0S3Y _
135 90E, | SLNNNOILNO3X3 |
vLva _ INIH 3NSSI - 21907 _ 018’
309n0S 40SSI9044 MOVLS
v1va 91E” F [180d [~ OV
ol 100d QVIHHL B Sya1SI93Y
Javm | [NHL eee €HL || ZHL || 1HL || OHL | 178
QuvH (€ 7 i j)
2267 / / oLe _ wzo;o:Emzj
N N |oedl €)
P MSVL || Msvl ASVL || MSVL |5 VSl
¥31NdINOD o pLes 3n3no LINN NOILDNYLSNI

SNLVHVYddY ONITANVH NOILYINYOANI

US 9,471,373 B2

Sheet 11 of 24

Oct. 18, 2016

U.S. Patent

SI1OAD 03XT) |

v Old

___ SAS ONILYH3dO —\
___ d4371dNOD _
___ a0 FUVMLHO0S _
___ $5300¥d _

%

[SNOILONNA A¥vHaIH
[S1TIvO AdvdEan H
[AYVH81T XHOMLIAN HA

S31dvEN

[[SNOILONYISNI |
Vsl]

AHOW3W

zey
LEY
[G2
ocy

ve
vLy
[€2
6V
Y44
TAd
k14
LoV

oy
~ 8l
L/ 2h
Ll

Y44

N___ Qyvd 03aIA _
N___ Q¥vd ANNOS _
d__ 3YNLOILIHOHYN _
v___ JYYMANVYH _
i__ 41NI YHOMLIN _

6l i__ 1L HHOMLIN _

v,__ MQAH SOIHdVYO _

Nndo
INIWIOVYNYIN AHOWIW _\ o:m__ H0SS300ud _

S30UNOSIY TVIIOOTTVIOISAH

oe, (SR 02X3)
X 'a'd YA% 4
YA'a'd 15194
lmhz_éhwzoo LINIHHND
b sey ~g0p
ovb 3dniiva) o (39VLI0A
S30Y¥N0S3Y TYNOILYH3JO
A% 2d
-
NOILONYLSNI LNIH 80% |
viv
HOLD3A INIWITLILNT
Yo~
omv(E SS300¥d _ 414
€ —e
20b (W_ INSWITLIINT
o 103rg0) bbb
2 ~S31LNI8YAYD
_ ¥3INQIHOS < R
Sy, oLy
S304N0SIY NIV.LYIOSY - 1907
90t,
INIH 3NSSI - 21901
INIWNOYIANT NOILND3X3

Yoot

US 9,471,373 B2

Sheet 12 of 24

Oct. 18, 2016

U.S. Patent

QG Old

€05 | ﬁ

dG Ol

c0S \ ﬁ

ONITNA3IHIS 304N0S3H
Y04 HOLO3A INJWITLILNI NO
(Q3Sv4d NOILONYLSNI LNIH 3NSSI

N_‘m/

ONINMNA3IHIS IDUNOS3Y
H04 JOL103A LINFWITLILNT NO
(Q3Sva NOILLONYLSNI LNIH 3NSSlI

S3ILNIEVdYO ANV S304N0S3ay
Q3NIVLY3IOSY 0L ONIQHOIOV
HOLO3A INJWITLIINI 13S

A

£0S |

A

S‘m/

S30YN0S3Y A3I4103dS ANV
d3NIVLY3OSY OL ONIQHOI2V
JOLO3A INIWITLILNT 13S

VS "Old

c0S é

$103rao Jod
S3ILNIgYdVYO ANV S304N0S3Y
Ad103dS ANV NIV1Y30SY

A

906G |

ONINTNA3HIS I0UNOS3A
d04 HOLO3A INJWITLILNT NO
Q3Svd NOLLONYLSNI LNIH 3NSSI

oLs

-]

S103rg0 A9 d3SN S304N0S3H
Ad103dS ANV NIVLY3IOSY

h

105 |

S0S

-]

$103rgo
A8 Q38N S32HNO0SIY JOLIO3A
INIWITLILNT NV NI AJIO3dS

00s

-

US 9,471,373 B2

Sheet 13 of 24

Oct. 18, 2016

U.S. Patent

4G Ol

425 \ ﬁ

103rdo Ag d3asn
S3J3UNO0S3Y 40 INIH IALLDIA3dd
SV NOILOMNYLSNI INIH 3SN

4G Ol

€CS | ﬁ

ad3sn LONSI
1VHL SHVMAYVYH NMOQ 33MOd

CeS

A

9¢s \

103rao
A8 J3SN LON SI VMAAVH
1VH1 NOILIONOD 3INIWY3L3A

as 'old

615\ é

HOLO3A INJWIATLILNT
ONISN 123rdo 31NA3HOS

816 |

JHVMAAVH
Ol HOLO3A INFWILILNI AddV

L1G

NOILONYLSNI LNIH 3AI303N

A

er/

NOILONYLSNI LNIH
A8 431S3ND3H 304NOS3Y SV
dJOLO3A INJWITLILNT JLVALLOY

g5 a

NOILONYLSNI 1NIH 3AIZ03Y

A

91G |

0zs ﬂ

NOILONYLSNI LNIH 3AI303N

S ﬁ

US 9,471,373 B2

Sheet 14 of 24

Oct. 18, 2016

U.S. Patent

HS Ol

LES a

INIWIILILNT OL
ONIQYOIIV SSI00Hd 3TNAIHIS

9€S

08 9Old

€ES | ﬁ

S103rdo A9 39vsn
334N0S3H O1 ONIGHOIIV
HOLO3A LINFWITLILNI AJIQOW

A

CES |

NOILONYLSNI LNIH VIA
HOLO3A INJWITLILNI ATddNS

$30dN0S3¥ 01 SS300dd
40 S1HOIY 3ININY313a3dd
SV INJWIILILNI AdID3dS

LES |

ses H

NOILONYLSNI LNIH 3AI303

0ss a

US 9,471,373 B2

Sheet 15 of 24

Oct. 18, 2016

U.S. Patent

99 Old

€19 ﬁ

S103rg0 ONINNA3HIOS
HO4 ¥OL1O3A INJWITLILNI 3SN

A

¢l9y

JHVYMAHVH
OL HOLO3A LNIWITLILNT A1ddY

19\

NOILONYLSNI LNIH
A8 S32HYNOSIY WO 1S3IND3IY SV
HOLO3IA INJWITLILNI 31VAILOVY

ol a

d9 'Ol

09\ ﬁ

3ovseNn
304N0S3Y OL ONIQHODIV
HOLO3A INJWITLILNT
AJIGOW ATIVOINVYNAQ

A

109\

HOL1O3A INJWITLILNI ONIANTONI
NOILONYLSNI LNIH 3AI303d

409 |

S311MNI8vdvd / S304N0S3Y
Q3NIVLY3ISY OL ONIGHOO2V
HOL1O3A INJWITLILNT L3S

V9 Ol

€09\ é

A

909 |

3OvsSn
304N0S3Y OL ONIHOIDV
dJOLI3A INJWNTTLILNT
AdIQON ATIVOINVYNAQ

S103rd0 A9 a3asn s3ALLNgvdvO
/ 830HNOS3Y NIVLY3OSY

A

109\

509~ H

JOLO3A INFWITLILNT ONIGNTONI
NOILOMYLSNI LNIH 3AI303Y

009~ ﬁ

US 9,471,373 B2

Sheet 16 of 24

Oct. 18, 2016

U.S. Patent

49 "OId

CE9 | q

INJWITLILNT OL
ONIQYOIIY SS3204d IINAIHOS

109\

HOLI3A INIJAITLILNT ONIGNTONI
NOILONHLSNI LNIH 3AI303d

1€9 \

S304N0S3Y Ol SS300dd
40 S1HOIY A3NINY313034d
SV INJWITLILNI AJID3dS

39 Ol

129 | ﬁ

123rdo Ag a3asn
$S304N0S3Y 40 INIH 3AILIIG3Nd
SV NOILONYLSNI LNIH 3SN

A

108 \

dg old

poo 1

a3sn 1ON si
1VHL JHVYMAEVYH NMOQJ ¥3IMOd

919

193rg0
A8 a3SN LON Si 3YVYMAYVYH
1VHL NOILIONOD 3NINY313a

N ﬁ

JOLI3A INJWITLILLNT ONIGNTONI
NOILJNYLSNI LNIH 3AI303

A

109

029 a

HOLI3A LNJWITLILNT ONIANIONI
NOILONYLSNI LNIH 3AI303y

5197 H

US 9,471,373 B2

Sheet 17 of 24

Oct. 18, 2016

U.S. Patent

oL Old

€04 \ ﬁ
dOLO3A
LNIWITLILNT 40 NOILONNA

SY SNOILONYLSNI LNIH WHO4

d. 9l4

€0L \ ﬁ

A

42

dJOL103NA
ANZIWITLILNT 40 NOILONNA
SV SNOILLONYLSNI LNIH WHOA

V. Ol

€0\ a

S304NOS3Y
A3NIVLY3ISV Ol ONIQHOIV
HOLO3A INJFWINLIINT 13S

A

L0L \

¥O103A
INIWITLILNT 40 NOILONNA
SV SNOILONYLSNI LNIH WHO4

:N/

S3ALNIFVdYO
ANV S304N0S3Y Q314103dS ANV
(A3NIVLY30SY Ol ONIQH022V
HOLO3A INJWIILILNT 138

A

c0L |

S$103rgo0
HO4 A8 d3sn S304N0S3Y
AdJI33dS ANV NIVLY3OSY

A

90/ |

S304N0S3d
40 NOILVNINY313a NO g3svg
HOLO3A INJWITLILNT 13S

Ve H

S133rdo Ag a3sn
SALLNIGVdVO ANV S30HN0S3Y
AdID3dS ANV NIVLY3IOSY

A

bOL \

G0.

-]

103rgo
A8 d3sN S30JN0S3Y 3INIWY3L3AA

004

S

US 9,471,373 B2

Sheet 18 of 24

Oct. 18, 2016

U.S. Patent

4/ 9Old

8¢\ ﬁ

a3sn LON Si
1VHL 3EVMAHVYH NMOQ d3MOd

LCL

103rao
Ag9 d3SN LON S| FHVYMAAIVH
1VHL NOILIONOD 3NINY313Q

4/ Ol

Vel ﬁ

HOLO3A INIWITLILNT
ONISN 1303rg0 371NA3HOS

X2

FJHAVMAHVYH
O1 HOLO3A INFWITLILNTI AlddV

(423N

A

9¢l \

NOILONYLSNI LNIH
A8 d31S3NnD3Y 3024N0S3Y SV
HOLO3A INFWITLILNT 3LVAILDY

A

122 \

NOILONYLSNI LNIH 3AI303d

sz H

NOILONYHLSNI LNIH 3AI303Y

ozL ﬁ

Si.

dZ old

€0L \ a
HOL123A
LINIW3TLILNT 30 NOILONNA

SV SNOILLONYLSNI LNIH W04

A

LVL

S3ALLIMNGVYdVYO ANV ST0HUN0S3TY
a3NIVLYIOSY O1 ONIQHOIIV
HOLO3A LINJWITLILNT 13S

A

9L

S133rgo 404 A9 d3sn
S3ALLNIEGVYdVYO ANV S30dN0S3Y
AdI03dS ANV NIV1¥30SY

-]

US 9,471,373 B2

Sheet 19 of 24

Oct. 18, 2016

U.S. Patent

VARSI

bl ﬁ

NOILOMYLSNI
1NIH A8 A314103dS INIJWITLILNIT
NO d3svd SS300¥d 31NA3HIOS

H. "Old

8EL\ ﬂ

S103rdo Ag 39vsSn
304N0S3d O1 ONIGHOIIVY
HOLO3IA LNIWITLILNI AJIQONW

A

LEL \

A

WL\

NOILDONHLSNI LNIH VIA
HOLD3A INFWITLILNT A1ddNS

NOILONYLSNI LNIH 3AIFO3

9EL |

9/ Old

CEL\ ﬁ

103rdo Ag ga3sn
S304NOS3Y 40 INIH 3AILIa3dd
SV NOILONYLSNI LNIH 3SN

oL ﬂ

NOILONYLSNI LNIH 3AI303Y

V€L

ger ﬁ

NOILONYLSNI LNIH 3AI303d

0e2 H

US 9,471,373 B2

Sheet 20 of 24

Oct. 18, 2016

U.S. Patent

L Ol

Lyl ﬁ

LINIWNOYUIANT A3aV3IHHL
<ILTNW NI LNINITLILNT OL
ONIQYOIIV AVIYHL ITNAIHIS

A

ov. \

$324N0S3Y OL SS300yd
40 S1HOIY a3NINY313d3dd
SV INJWITLILNT AdIO3dS

s H

US 9,471,373 B2

Sheet 21 of 24

Oct. 18, 2016

U.S. Patent

08 Old

€18 | ﬂ

g8 Ol

v08 | ﬁ

INIWITLIINT
NO d3Svd SS300dd I1NA3HIS

V8 'OId

708 | ﬁ

HOLO3A INJANIILILNT OL
ONIJYOIIV L2390 I1NA3IHIS

€08 |

IN3INITLILINT
NO d3Sv8 SS300¥d 31NA3HIS

cl8

HOLO3A
INIWITLILNG ONISIHdINOD
NOILONYLSNI LNiH 3AI303d

€08 |

FAVMAYVH
OL YO103A INFWITLILNT AlddV

208 \

dJOLO3A
INIJWITLILNT ONISIHdNOD
NOILONMYLSNI LNIH 3AI203Y

18

S3LLNIgvdvYO
ANV S324N0S3Y a314id3dS ANV
(3NIVLY3OSY O1 ONIQHOIIV
HOLO3A INJWITLILNT 13S

A

ao8 \

NOILONYLSNI
1INIH A8 d31S3N03H
S32YNO0STIY JO4 LSIND3IY SV
HOLI3A INJFWITLILNT 3LVAILOY

A

908 |

HOLO3A INJWITLILNT NI L93r80
A8 G3SN S30UNOSIY Ad4I03dS

o8

-

S103rdgo A9 dasn
S3LNIgVYdVYD ANV S30dN0S3Y
AdIO3dS ANV NIVLY3OSY

108 |

S08

-

S304N0S3Y OL SS300Ud
40 S1HOIY Q3aNIWY313d3dd
SV IN3JWITLILNT AJID3dS

008

-

US 9,471,373 B2

Sheet 22 of 24

Oct. 18, 2016

U.S. Patent

ds old

L8 ﬁ

a3sn 10N Si
1VHL HVYMAHVYH NMOQJ ¥3MOd

A

918\

103rao
A8 d3SN LON SI 3HVYMAYVH
1VHL NOILIANOD ININY3L3A

4

€08 |

J0103A
ANIWITLILNT ONISIIdWOD
NOILONYLSN! LNIH 3AI303Y

518~ ﬁ

U.S. Patent Oct. 18, 2016 Sheet 23 of 24 US 9,471,373 B2

¥ 900
COMPUTER-READABLE STORAGE MEDIUM BEARING PROGRAM INSTRUCTIONS

~ 916

| PROGRAM INSTRUCTIONS FOR SPECIFYING RESOURCES USED BY OBJECTS I
~ 918

[PROGRAM INSTRUCTIONS FOR ISSUING HINT INSTRUCTION
~ 920

l PROGRAM INSTRUCTIONS FOR RECEVING HINT INSTRUCTION I
-~ 922

| PROGRAM INSTRUCTIONS FOR DYNAMICALLY MODIFYING ENTITLEMENT VECTORj
~ 924

[PROGRAM INSTRUCTIONS FOR DETERMINING RESOURCES USED BY OBJECT I
~ 926

l PROGRAM INSTRUCTIONS FOR SETTING ENTITLEMENT VECTOR]
~ 928

| PROGRAM INSTRUCTIONS FOR FORMING HINT INSTRUCTION |
~ 930

| PROGRAM INSTRUCTIONS FOR SPECIFYING ENTITLEMENT l
~ 932

| PROGRAM INSTRUCTIONS FOR SPECIFYING RESOURCES USED BY OBJECTS —|
~ 934

| PROGRAM INSTRUCTIONS FOR RECEIVING HINT INSTRUCTION
~ 936

| PROGRAM INSTRUCTIONS FOR SCHEDULING PROCESSES I

~906

FIG. 9

U.S. Patent Oct. 18, 2016 Sheet 24 of 24 US 9,471,373 B2

INFORMATION HANDLING APPARATUS 1008
PROCESSOR 1016 L CLIENT
[MEANS FOR SPECIFYING RESOURCES USED BY OBJECTS |
1018
| MEANS FOR ISSUING HINT INSTRUCTION
1020
| MEANS FOR RECEVING HINT INSTRUCTION] ENTITLEMENT
1022 1054
[MEANS FOR DYNAMICALLY MODIFYING ENTITLEMENT VECTOR | INFORMATION
FROM OP RES
1024 1012
| MEANS FOR DETERMINING RESOURCES USED BY OBJECT |
£1026 1008
| MEANS FOR SETTING ENTITLEMENT VECTOR] c
~1028
[MEANS FOR FORMING HINT INSTRUCTION | CLIENT
~1030
B MEANS FOR SPECIFYING ENTITLEMENT
21032
[MEANS FOR SPECIFYING RESOURCES USED BY OBJECTS |
1034
[MEANS FOR RECEIVING HINT INSTRUCTION | 1008; g
1036
| MEANS FOR SCHEDULING PROCESSES | DATA
SOURCE
| PROCESS H—q 056 —
~1004 v\‘©
| EenmiTLEMENT vECTOR | SOURCE
| HINT INSTRUCTION m 1014 1088
MEMORY - 1000

MEMORY BLOCK

l FUNCTION I 1050 COMPONENT
OBJECT 1052
%" 1002

FIG. 10

US 9,471,373 B2

1
ENTITLEMENT VECTOR FOR LIBRARY
USAGE IN MANAGING RESOURCE
ALLOCATION AND SCHEDULING BASED
ON USAGE AND PRIORITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is related to and claims the benefit
of the earliest available effective filing date(s) from the
following listed application(s) (the “Related Applications™)
(e.g., claims earliest available priority dates for other than
provisional patent applications or claims benefits under 35
USC §119(e) for provisional patent applications, for any and
all parent, grandparent, great-grandparent, etc. applications
of the Related Application(s)). All subject matter of the
Related Applications and of any and all parent, grandparent,
great-grandparent, etc. applications of the Related Applica-
tions is incorporated herein by reference to the extent such
subject matter is not inconsistent herewith.

RELATED APPLICATIONS

For purposes of the USPTO extra-statutory requirements:

(1) the present application constitutes a continuation-in-
part of U.S. patent application Ser. No. 13/136,024, entitled
“CONTROL FLOW INTEGRITY”, naming Andrew F.
Glew, Daniel A. Gerrity, and Clarence T. Tegreene, as
inventors, filed Jul. 19, 2011, which is currently co-pending,
or is an application of which a currently co-pending appli-
cation is entitled to the benefit of the filing date;

(2) the present application constitutes a continuation-in-
part of U.S. patent application Ser. No. 13/136,401, entitled
“FINE-GRAINED SECURITY IN FEDERATED DATA
SETS” naming Andrew F. Glew, Daniel A. Gerrity, and
Clarence T. Tegreene, as inventors, filed Jul. 29, 2011, which
is currently co-pending, or is an application of which a
currently co-pending application is entitled to the benefit of
the filing date;

(3) the present application constitutes a continuation-in-
part of U.S. patent application Ser. No. 13/136,400, entitled
“ENCRYPTED MEMORY” naming Andrew F. Glew, Dan-
iel A. Gerrity, and Clarence T. Tegreene, as inventors, filed
Jul. 29, 2011, which is currently co-pending, or is an
application of which a currently co-pending application is
entitled to the benefit of the filing date;

(4) the present application constitutes a continuation-in-
part of U.S. patent application Ser. No. 13/136,666, entitled
“SECURITY PERIMETER” naming Andrew F. Glew, Dan-
iel A. Gerrity, and Clarence T. Tegreene, as inventors, filed
Aug. 4, 2011, which is currently co-pending, or is an
application of which a currently co-pending application is
entitled to the benefit of the filing date; and

(5) the present application constitutes a continuation-in-
part of U.S. patent application Ser. No. 13/136,670, entitled
“PROCESSOR OPERABLE TO ENSURE CODE INTEG-
RITY” naming Andrew F. Glew, Daniel A. Gerrity, and
Clarence T. Tegreene, as inventors, filed Aug. 4, 2011, which
is currently co-pending, or is an application of which a
currently co-pending application is entitled to the benefit of
the filing date;

(6) the present application constitutes a continuation-in-
part of U.S. patent application Ser. No. 13/199,368, entitled
“INTRUSION DETECTION USING TAINT ACCUMU-
LATION” naming Andrew F. Glew, Daniel A. Gerrity, and
Clarence T. Tegreene, as inventors, filed Aug. 26, 2011,

25

40

45

50

2

which is currently co-pending, or is an application of which
a currently co-pending application is entitled to the benefit
of the filing date;

(7) the present application constitutes a continuation-in-
part of U.S. patent application Ser. No. 13/200,547, entitled
“INSTRUCTION SET ADAPTED FOR SECURITY RISK
MONITORING” naming Andrew F. Glew, Daniel A. Ger-
rity, and Clarence T. Tegreene, as inventors, filed concur-
rently herewith on Sep. 24, 2011, which is currently co-
pending, or is an application of which a currently co-pending
application is entitled to the benefit of the filing date;

(8) the present application constitutes a continuation-in-
part of U.S. patent application Ser. No. 13/200,550, entitled
“RESOURCE ALLOCATION USING ENTITLEMENTS”
naming Andrew F. Glew, Daniel A. Gerrity, and Clarence T.
Tegreene, as inventors, filed concurrently herewith on Sep.
24, 2011, which is currently co-pending, or is an application
of which a currently co-pending application is entitled to the
benefit of the filing date; and

(9) the present application constitutes a continuation-in-
part of U.S. patent application Ser. No. 13/200,550, entitled
“RESOURCE ALLOCATION USING A LIBRARY WITH
ENTITLEMENT” naming Andrew F. Glew, Daniel A. Ger-
rity, and Clarence T. Tegreene, as inventors, filed concur-
rently herewith on Sep. 24, 2011, which is currently co-
pending, or is an application of which a currently co-pending
application is entitled to the benefit of the filing date.

The United States Patent Office (USPTO) has published a
notice to the effect that the USPTO’s computer programs
require that patent applicants reference both a serial number
and indicate whether an application is a continuation or
continuation-in-part. Stephen G. Kunin, Benefit of Prior-
Filed Application, USPTO Official Gazette Mar. 18, 2003,
available at http://www.uspto.gov/web/offices/com/sol/og/
2003/week11/patbene.htm. The present Applicant Entity
(hereinafter “Applicant™) has provided above a specific
reference to the application(s) from which priority is being
claimed as recited by statute. Applicant understands that the
statute is unambiguous in its specific reference language and
does not require either a serial number or any characteriza-
tion, such as “continuation” or “continuation-in-part,” for
claiming priority to U.S. patent applications. Notwithstand-
ing the foregoing, Applicant understands that the USPTO’s
computer programs have certain data entry requirements,
and hence Applicant is designating the present application as
a continuation-in-part of its parent applications as set forth
above, but expressly points out that such designations are
not to be construed in any way as any type of commentary
and/or admission as to whether or not the present application
contains any new matter in addition to the matter of its
parent application(s).

BACKGROUND

Resource allocation in data processing and computing is
used for applications to run on a system. A program initiated
by a user generates a process. A computer allocates
resources for the process to be run. Typical resources include
access to a section of computer memory, data in a device
interface buffer, one or more files, a suitable amount of
processing power, and the like.

A computer with only a single processor can only perform
one process at a time, regardless of the number of programs
loaded by a user or initiated on start-up. Single-processor
computers emulate the running of multiple programs con-
currently because the processor multitasks, rapidly alternat-
ing between programs in very small time slices. Time

US 9,471,373 B2

3

allocation is automatic, however higher or lower priority
may be given to certain processes with high priority pro-
grams typically allocated either more or larger slices of
processor execution time.

On multi-processor computers, different processes can be
allocated to different processors so that the computer can
truly multitask.

SUMMARY

An embodiment of an information handling apparatus can
comprise an entitlement vector operable to specify resources
used by at least one object of a plurality of a plurality of
objects, and logic operable to issue a hint instruction based
on the entitlement vector for usage in scheduling the
resources.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention relating to both structure
and method of operation may best be understood by refer-
ring to the following description and accompanying draw-
ings:

FIGS. 1A, 1B, 1C, and 1D are schematic block diagrams
showing embodiments of an information handling apparatus
adapted to facilitate resource allocation;

FIGS. 2A, 2B, and 2C are schematic block diagrams
illustrating embodiments of an information handling appa-
ratus adapted to allocate resources based on a received hint
instruction;

FIGS. 3A, 3B, and 3C are schematic block diagrams
which depict embodiments of an information handling appa-
ratus adapted to determine usage of resources and use this
determination to form a hint instruction;

FIG. 4 is a schematic block diagram showing an embodi-
ment of an information handling apparatus adapted to
receive a hint instruction and schedule resources accord-
ingly;

FIGS. 5A through 5H are schematic flow diagrams depict-
ing an embodiment or embodiments of a method operable in
an information handling apparatus adapted for allocating
resources;

FIGS. 6A through 6F are schematic flow diagrams show-
ing an embodiment or embodiments of a method operable in
an information handling apparatus adapted to allocate
resources based on a received hint instruction;

FIGS. 7A through 7] are schematic flow diagrams illus-
trating an embodiment or embodiments of a method oper-
able in an information handling apparatus adapted to deter-
mine usage of resources and use this determination to form
a hint instruction;

FIGS. 8A through 8D are schematic flow diagrams depict-
ing an embodiment or embodiments of a method operable in
an information handling apparatus adapted to receive a hint
instruction and schedule resources accordingly;

FIG. 9 is a schematic block diagram illustrating an
embodiment or embodiments of a computer program prod-
uct configured for allocating resources using hint instruc-
tions; and

FIG. 10 is a schematic block diagram showing an embodi-
ment of an information handling apparatus which is adapted
to facilitate resource allocation.

DETAILED DESCRIPTION

In various embodiments, computer systems and associ-
ated methods can be configured to include one or more of
several improvements that facilitate resource handling.

10

15

25

40

45

50

55

4

Various aspects of resource allocation include hardware
threading, computational limits, pooled resources, entitle-
ments, and others. Resource allocation can be handled via
various architectural aspects of a system including micro-
architecture, instruction set architecture (ISA), operating
system, and library calls. Software can associate capabilities
with particular library functions or software objects. This
software can be in the form of compiler, operating system,
or others. The operating system can, for example, create a
profile for any process running floating point operations and
give that entitlement. Resources allocated include proces-
sors, central processing units (CPUs), graphics hardware,
network controllers, memory, memory management, other
hardware, and the like. Resources further include power,
cycles, and the like.

Entitlements can be used to allocate resources. Entitle-
ments can be defined as user-specified rights wherein a
process is entitled to a predetermined percentage of power or
of time. A scheduler or chooser can monitor entitlement
values and schedule the next highest priority process. A
particular scheme can allocate modulo by bit to avoid
starving a process with lower entitlement. In some condi-
tions, the level of entitlement can be overridden or adjusted.
Entitlement can be set according to a predetermined algo-
rithm which defines a “fair share” for the processes, for
example round-robin, history-based, randomized, and the
like, which are efficient since a large history need not be
accumulated. Thus, an efficient and inexpensive hardware
implementation is possible.

A metric can be specified which enables modification of
a goal. A selected level of entitlement to resource consump-
tion can be assigned to each process. One example scheme
can be a short, low complexity method which is imple-
mented while storing a limited operation history. For
example, when running low on battery charge, a sequence
1-2-3-4-4-3-2-1 can be used to determine whether any of the
processes is a resource glutton and can rank the processes on
order of gluttony. The most gluttonous can be assigned the
lowest priority. Another option can rank processes according
to gluttony in combination with another factor of goodness
(niceness). Processes can be ranked for the next cycle with
the most gluttonous given last priority or can be ranked
according to gluttony and one other nice system criterion.
Monitoring and/or control can be performed highly effi-
ciently if hardware, although either monitoring can be
performed either in hardware or software in various embodi-
ments. Power management units in CPUs can be used for
monitoring, for example to monitor for increases or
decreases in voltage or frequency, and for thread execution
selection.

Capabilities can be used to perform monitoring and
allocation of resources. For example, granting the capability
to run video processing software can be combined with
simultaneous granting of power capability.

Power is typically global to a process or to an individual
CPU. Use of capabilities enables more refined control of
power, for example power can be made specific to an object
or library routine. With power global to a process, the
process will continue to run in absence of a fault, a page
fault, a disk access, or the like, and will run until blocked by
the operating system scheduler, allowing high power con-
sumption. Use of capabilities enables power to be controlled
on a per-hardware thread granularity. Use of capabilities
further enables power to be controlled specific to a per-
hardware thread granularity for throttling power.

Processors can use instruction prefetch to improve execu-
tion speed by reducing wait states. The processor prefetches

US 9,471,373 B2

5

an instruction by request from main memory before the
instruction is needed and, when retrieved from memory,
placing the prefetched instruction in a cache. When needed,
the instruction is quickly accessed from the cache. Prefetch
can be used in combination with a branch prediction algo-
rithm which anticipates results of execution to fetch pre-
dicted instructions in advance. Prefetches conventionally
operate independently. In some embodiments, a processor
disclosed herein can prefetch according to holistic monitor-
ing of operating conditions such as voltage, frequency, and
the like to more accurately determine or predict which
instructions to prefetch.

The cache can be reconfigured dynamically, for example
beginning with a single large, slow cache which can be
divided into a relatively small subcache and a larger sub-
cache to enable faster operation. In embodiments disclosed
herein, operating characteristics can be monitored to gener-
ate information for dynamic reconfiguring of the cache. As
a result of the monitored operating conditions, the cache can
be selectively configured for slower or faster speed, larger
and smaller cache subregions. In some conditions, part of
the cache can be temporarily disabled, for example to save
power. Monitoring of operating conditions can enable a
suitable balance of considerations to determine whether part
of the cache is to be disabled, for example determining
whether the power saved in disabling part of the cache is
appropriate in light of the power lost with a greater cache
miss rate.

Disclosed system and method embodiments can use oper-
ating condition monitoring and holistic control at the level of
calling an object. In an object-level paradigm, various
objects or values (such as numbers, symbols, strings, and the
like) can be combined to form other objects or values until
the final result objects or values are obtained. New values
can be formed from existing values by the application of
various value-to-value functions, such as addition, concat-
enation, matrix inversion, and the like. Various objects have
different impacts on system operations.

An example of an object which, when called, can have
large consumption of power or other resources is video
encoding which is a brute force, unintelligent algorithm
which runs much more efficiently on dedicated hardware
than a general CPU, and has real-time constraints. Video
conferencing has similar real-time constraints.

Another object example is video games which perform
many different tasks concurrently including processing
geometry and processing video simultaneously, possibly
processing speech for Skype communications, voice com-
pression, input/output, and the like. Video games thus typi-
cally involve concurrent operation of multiple objects such
as the game processing tasks and interface (Application
Programming Interface, API) that perform different actions
separately. The multiple objects are commonly run as sepa-
rate threads, unless prohibitive due to the large amount of
overhead in running threads that are not essential. Separate
threads simplity programming.

In some configurations, applications, and conditions, mul-
tiple threads can be run wherein the threads need not be run
in the same context.

Hyperthreading is a particular implementation of hard-
ware threading. Software threading is a slightly different
implementation of threading wherein the threads are often,
but not always, related. In some implementations, a proces-
sor can include a GOAL register that can be used to set
performance characteristics for particular threads. For
example, if different routines (Skype, physics) are run in
different threads, selected operating characteristics for the

10

15

20

25

30

35

40

45

50

55

60

65

6

threads can be loaded into the GOAL register to give the
threads separate issues. Allocating priority to the different
threads can be difficult. In an illustrative system, priority to
the threads can be allocated using a NICE utility which
specifies acceptable performance for a particular operation
and allows reduced priority in appropriate conditions for
tasks that can be assigned lower priority with little or no
consequence.

In an example implementation, priorities, particular types
of priorities, and entitlements can be associated with par-
ticular library routines to facilitate management of relatively
heuristic phenomena. A library can be constituted wherein
entitlements are assigned to individual library routines. The
library includes information for adjusting the priority of
threads. In some configurations or applications, the library
can support hint vectors, such as branch prediction hints to
specify whether static prediction should be taken or not
taken. In some embodiments, the library can be configured
to support NICE-type handling of a hint vector.

A process scheduler can be constituted to support priori-
tized entitlements and resource allocations upon calling
selected libraries. A typical embodiment includes such sup-
port in software, although hardware support can also be
implemented. For example, a network library can include
library routines adapted for heavy network usage so that
resources giving access to the network are more important
processes to schedule. More entitlements are allocated to
network-related resources. Libraries can also be configured
to handle secondary priorities that change dynamically. For
example, a sound card can have a greater power priority and
have a pattern of operation wherein a process uses a network
card and possibly other subsystems in combination with the
sound card. Thus, the network card and other subsystems
can also be allocated a higher priority. Similarly, for a
process which performs less modeling and number compu-
tation in lieu of higher input/output operations and sending
of information, a higher level of priority can be allocated to
input/output resources.

Entitlements can be used to specify operations of a library.
For example, a library with entitlement to run a predeter-
mined number of floating point operations per second can,
in response to a condition of executing instructions with few
or no floating point computations, use the condition as a hint
to power down floating point hardware, thus saving power.
Thus, if computations include fixed point operations but no
floating point operations, an a priori indicator can be gen-
erated designating that the floating point hardware is not
needed in the near future and can be powered down. A
process can call a library and, if known that a resource is not
needed, the resource can be temporarily halted, thereby
changing the entitlement level of that process with respect to
the resource (for example a floating point unit) to a very low
point.

In the illustrative example, the entitlement level of the
process with respect to the floating point unit can be changed
to very low because the resource is not needed for a
foreseeable duration. The process thus indicates to other
processes a willingness to relinquish access to the source, for
example a willingness to be “nice” about allowing others to
use the resource, so that access is deferred in favor of any
other process that uses the resource, or the resource is shut
down if not currently needed by another process.

Rather than have hardware determine demand for a
resource after instructions have been executed, the illustra-
tive system and method can use a call to a library or the
result of making a call to the library as an indicator of
entitlement niceness. This entitlement can be enforced in the

US 9,471,373 B2

7

manner of capabilities, for example by requesting access to
a memory region, a request which may be denied. The
library can give information regarding entitlement, thus
giving a priori knowledge.

Resource allocation can also be managed using hints. An
illustrative instruction that uses a hint is a hint that not much
floating point computation is to be performed, a hint indica-
tive of power demand. For example, hints to maintain power
at a low level or to maintain power at a high level. An
exception can create problems when using hints, since a hint
is not unwound in the event of an exception. For example,
for a hint to maintain high power, an exception which
changes the condition but does not reset the hint allows
hardware to remain in a high power mode, potentially
forever. Examples of problems with hint processing in
conditions of context switching include problems with
unlocking memory locations.

In contrast to entitlements, capabilities enable mecha-
nisms to unwind.

Entitlement Vector.

An entitlement vector may comprise multiple fields that
are respectively directed to multiple different resources or
capabilities. General examples may include, for example,
floating point, power, arithmetic logic unit (ALU), graphics
triangle computations, translation lookaside buffers (TLBs),
virtual memory usage, and the like. The entitlement vector
can thus be used, for example, to power down the TLB as no
longer relevant to operation, or to enable usage of a wide
range of virtual memory. Software can determine values for
each of these fields, for example after monitoring, or the
fields can be preconfigured. To maintain in hardware, an
entitlement vector may be a suitable size, such as 256 bits.
Values can be Boolean. Otherwise, values can be a number
from a numerical range to indicate how much from a
percentage or relative sense of a given resource is being
requested. For example, a big number may be placed in an
ALU field if significant usage of the ALU is expected.

Libraries or other objects (and associated threads) can
request entitlements. Objects use resources to execute. For
example, a networking library has greater usage of a net-
work resource than other libraries or objects. Particular
entitlements may be assigned to individual library routines
using an entitlement vector, which can indicate expected
capabilities to which an object may be entitled. Entitlements
may be assigned via the entitlement vector. An entitlement
vector may be used when selecting a thread for execution in
a multi-threading environment in terms of aspects such as
priority.

In some embodiments, an entitlement vector can be used
as a hint for an object. Software or a manual determination
can ascertain and/or specify what resources/capabilities are
to be used by an object, such as a library. Code may be
included, for example at the beginning of a library, to request
particular resources in the form of an entitlement vector. The
request may be a request for preferential scheduling, espe-
cially with regard to resources. Such code may be a hint, a
data structure, a set of one or more bits, or the like in the
library.

In some embodiments and/or applications an entitlement
vector can be operable as a repercussion of a calling library.
An entitlement vector can serve as a request for resources.
The request may be realized as a call to a system call, such
as a request to the operating system to allocate additional
resources. A hint instruction can be provided to hardware,
for example for hardware to use in scheduling. When a
library call is made, an entitlement vector may be returned.
An entitlement vector can be returned directly or by refer-

10

15

20

25

30

35

40

45

50

55

60

65

8

ence to an address/register location. Otherwise, an entitle-
ment vector may be installed, for example in association
with a register, as a result or side effect of making the library
call.

An entitlement vector can be configured to handle field of
scale. Human perception is limited. For data representing
phenomena that are to be perceived by humans, the data size
may be limited so that precision beyond what is human-
perceptible may be omitted to conserve resources. Accord-
ingly, a requested data resource can be scaled down or set to
a maximum size. For example, finger prints do not require
greater than 2 MB, and eyes can discern only “x” amount of
resolution. Scale may also be applied to other parameters
having a relevant precision that is constrained by the physi-
cal world. Thus, a field of the entitlement vector can specify
scale. Examples of scale can be human scale, width of the
accumulator, or any suitable scale. For example, for a finger
print, a suitable scale can be no more than 2 MB.

The entitlement vector field can have a suitable predeter-
mined data path width. Communication and computational
data path widths may be large to accommodate data-inten-
sive activities. A data path width entitlement vector field
may request a reduction to or only a portion of a maximum
available data path width. For example, perhaps only 128
bits of 1024 bits are needed. The other bits of the non-used
data path width may be shared with another process or shut
down to conserve energy. For example, a portion of a
power-hungry super accumulator may be powered down in
response to a data path width indication in a field of an
entitlement vector. Thus, a field of the entitlement vector can
be data path width, a similar concept to scale. A large
instruction size, for example 1024 bits, wastes power, but
typically only a portion of the bits are used at one time so
that a desired subset of the bits can be activated, changing
the data path width. The scale concept leads to the concept
of a selected partial data path width. The data path width is
part of the entitlement. For example, of 1024 bits logic can
compute the number of bits actually needed and allocate that
predetermined subset of bits, such as 128 bits. The data path
field thus can be used to lower the data path width used of
the available entitlement vector width, for example activat-
ing a super-accumulator data path width.

An entitlement vector can also be used to supply infor-
mation for scheduling. Individual instruction pointers or
threads can be associated with an entitlement vector. For
example, four instruction pointers (IPs) can be associated
respectively with four entitlement vectors. Logic for a thread
chooser can schedule a next thread for execution based at
least partly on an entitlement vector. Hence, an entitlement
vector may affect priority of scheduling. For example, a
glutton with low priority may be moved toward the back of
a queue. A miserly resource user with a high priority, on the
other hand, can be moved toward the front of the queue.

The entitlement vector can enable usage of selected
scheduling functions. Different functions can be used to
schedule threads with regard to entitlement vectors. Gener-
ally, a function (i) can be based at least partly on: a weight,
an entitlement vector,, and a usage level,. A function can be,
but is not necessarily, linear. For example, a sum of a product
of'a weight times an entitlement vector may be compared to
a usage vector when considering priority for scheduling
threads.

An entitlement vector and usage vector can be mutually
associated. An entitlement vector for an object can be set by
software. A usage vector may be determined by hardware by
monitoring resource usage during execution. An entitlement

US 9,471,373 B2

9

vector and a usage vector can be combined into an uber-
priority vector that can be used when scheduling threads.

In an example software embodiment, software can moni-
tor the system over history, or can be preprogrammed, and
fills in some sets in entitlement vector fields. Software can
determine values for the fields and fill in the bits of data,
possibly associated as a lookup table, an associated hash
table, an extra field to call for a library, and the like. For a
library call, an entitlement vector EV is returned. The
entitlement vector can be received from various sources, for
example from external to calling software. For example, the
entitlement vector EV may be installed into hardware as a
side effect of the library call.

A factor in determining whether the entitlement vector is
handled in software or hardware is the size of the vector.

In an example hardware implementation, a suitable
entitlement vector size is 256 bits, although any suitable size
is possible. For example, a vector of 64K bits is generally
considered too large for hardware implementation.

In some embodiments, an entitlement vector can be
associated with each library. The entitlement vector can be
used, for example, to eliminate floating point if desired,
reduce the number of floating point operations if such
operations are rarely used, reduce the scale as appropriate
when full accumulator width is unnecessary, increase sup-
port for the ALU.

The entitlement vector can be implemented as a call with
amemory address made in association with a call to a library
which, for example, can return a pointer or address location
to the entitlement vector.

Another field of the entitlement vector can be a chooser/
thread selector. The entitlement vector can be used by the
chooser/scheduler, which includes logic that performs
operations based on a single entitlement vector or possibly
relative entitlement vectors. Each Instruction Pointer (IP) or
thread can have an associated entitlement vector. For
example instruction pointers, for IP1, 1P2, IP3, IP4, then
four entitlement vectors can be allocated. Chooser/scheduler
logic considers the entitlement vector when scheduling the
next thread for computation. The logic informs the chooser/
scheduler about how to make the selection. The logic can
perform selected functions to make the choice and for
scheduling, for example by elevating or decreasing priority
of a thread.

An example function using an entitlement vector (EV)
can compute the sum of weight times EV, compared to the
usage vector of Thread,, a simple target function for evalu-
ating when to schedule threads from the highest priority to
the lowest priority. Thus, for a thread with high priority and
large requirement for resources, the thread can be elevated
in the scheduling list and resources are likely to be allocated.
In contrast, a thread that is a glutton for resources and has
low priority is likely to be deferred by the scheduler, moving
back or to the end of the list of scheduled threads. A high
priority thread that consumes only limited resources is likely
to be moved up in the schedule list, possibly to the front of
the list.

In some embodiments, the entitlement vector supplied by
a HINT instruction can be modified by a capability process.
Iustratively, the entitlement vector can set entitlement to
use X resources which can be limited by the operating
system for example by reduced weighting or setting of
maximum allowed resources. The entitlement vector can
also be limited according to usage, wherein a thread using an
inordinately large amount of resources can be limited when
the high usage is detected or predicted.

20

40

45

55

10

The entitlement vector function F,(w,, EV,, v,) of weight
(w,), entitlement vector (EV),), and resource volume (v,) can
be either linear or non-linear.

The entitlement vector enables association of scheduling
with functions. The entitlement vector further enables asso-
ciation of priority with functions.

One of the challenges in allocating resources is the
potential for highly unpredictable changes in resource
demand. For example, minor changes in workload can result
in substantial variation in performance. Another challenge is
unpredictable behavior in response to context switches from
one process to another. One technique for dealing with these
challenges is making a library call as a technique for
determining whether a context switch occurred or, if not
expecting to make a library call, perform an action that
randomizes priority. If degradation results from making the
library call, then performance can be monitored to determine
whether performance is reduced. If so, priority of the threads
can be randomized. Example techniques for randomization
can include a Boltzmann search, simulated annealing, hop-
around, other lateral computing techniques, and the like. A
Boltzmann search can be performed by a Boltzmann
machine, a stochastic recurrent neural network that is
capable of learning internal representations and solving
combinatoric problems. Simulated annealing is a computer
technique used for answering difficult and complex prob-
lems based on simulation of how pure crystals form from a
heated gaseous state. Instead of minimizing the energy of a
block of metal or maximizing strength, the program can
minimize or maximize an objective relevant to the problem
at hand, specifically randomization to attain stable perfor-
mance. In a hop-around technique, priority or other param-
eters can be bounced around to determine a local maximum
but not global optimum. Search optimizations can be used to
determine whether truly at a maximum value. The new
results can be compared with an old optimum.

In some embodiments, a supervisor circuit, for example
for thermal and/or overvoltage protection, can modify the
entitlement vector.

Entitlement Vector for Power Control Monitoring.

The entitlement vector, for example in combination with
a usage vector, can be used for monitoring power control. In
various embodiments, power control monitoring can be
performed remotely or locally, possibly by the operating
system.

In an example embodiment, a user can supply an entitle-
ment vector using instructions, for example by specification
of the beginning and end of a function. The entitlement
vector can be used in association with a performance moni-
toring unit which monitors and determines other entitlement
vectors. In various embodiments, the entitlement vectors can
be maintained separately or combined into a single effective
entitlement vector.

Context Switches.

Context switches can be defined as switches from one
process to another. In contrast, a thread can typically be
considered limited to a single context. Standard threads and
mock threads share resources including context and can
have multiple processes, multiple threads within the same
privilege level technically. However, a threading library and
threading operating system can be created wherein threads
are not limited to the same context. Threads can comprise
simply a stack and an instruction pointer, and can run in the
same address space, for example threads can run as different
users in the same address space. In a case of multiple users
accessing the same database, if the database is a shared-
memory database, software or an interpreter can be respon-

US 9,471,373 B2

11

sible for ensuring that unauthorized user(s) cannot access
certain data. In the case of users assigned different privilege
levels or different threads in the same virtual memory
address space assigned different privilege levels, different
registers are assigned to particular users and/or threads, and
thus switches between users and/or threads are context
switches.

Privileges can be associated with a page, a page table, an
actual physical memory address, a virtual memory address,
and the like.

Combining Capabilities and Entitlement.

In some embodiments, the capabilities vector and the
entitlement vector can be merged. In some aspects of
operation, entitlement can be considered to be a capability.
With entitlements specified, the associated performance
capabilities and management of associated capabilities pre-
vents unauthorized access to data and/or resources, and
prevents system takeover, unless specifically allowed or
enabled by a system call, improving security and enabling
denial of service to attacks.

Merged capabilities and entitlement can be used to pre-
vent microarchitectural denial of service. Denial of service
is typically considered to arise from a hacker on a network
blocking access by using up all or a substantial part of
network bandwidth. For example, when operating on a
virtual machine in a cloud computing platform (such as
Amazon Elastic Compute Cloud (EC2)) a job can be run that
thrashes the cache, resulting in an architectural denial of
service in response. Preventative remedies can include
checking for performance counters and preventing such
unauthorized accesses. Microarchitectural remedies can also
be used such as implementing microarchitectural covert
channels in which, for various types of code, secret keys
running on the same virtual machine can be detected.
Similarly, microarchitectural covert channels can be used to
monitor timing of code to detect intrusion and to detect
whether a bit is set in a particular bit position which may
indicate intrusion. Microarchitectural techniques can thus
include timing channels and covert channels for use when-
ever a shared resource is to be modulated. Covert channels
can be applied, for example, in modulating a disk arm,
detecting seeks on a file system.

In various embodiments, operations implementing and
using the entitlement vector can be executed by software in
a processor, by microcode, in logic, in hardware, or the like.

Hardware Threading.

Several aspects of hardware threading are currently
implemented in processors such as CPUs. Simultaneous
threading (SMT), hyperthreading, or simultaneous hyper-
threading relate to hardware execution of two or four threads
selected for running at any time, managed according to
many fine-grained scheduling decisions. In a cycle, two
threads are selected at instruction fetch, typically at the front
of the pipeline and hardware determines which of the two
thread’s instructions to fetch. An instruction for each of the
threads pass to an out-of-order machine within which the
instructions are running concurrently. For example, an arith-
metic logic unit (ALU) instruction from thread 1 and a
memory instruction from thread 2 can run simultaneously.

Another type of hardware threading is interleaved multi-
threading (IMT) which removes all data dependency stalls
from the execution pipeline. One thread is relatively inde-
pendent from other threads so the probability of one instruc-
tion in one pipeline stage needing an output from an older
instruction in the pipeline is low. IMT is conceptually
similar to pre-emptive multi-tasking used in operating sys-
tems.

10

15

20

25

30

35

40

45

50

55

60

65

12

In contrast to CPU multithreading which handle relatively
few threads (typically two or four threads), graphics pro-
cessing units (GPUs) are stream processors for computer
graphics hardware and manage hundreds or thousands of
threads, thus using much more sophisticated scheduling.
When blocking occurs, for example on a cache miss such as
from a memory reference, a very large number of threads are
blocked. Threads are chosen for execution on massively
parallel thread arrays. In a typical arrangement, a processor
has approximately 64,000 threads of which only about a
thousand execute at one time. Underlying operations during
execution include scheduling, addressing cache misses, and
the like. Rather than scheduling from a memory pool, GPUs
schedule instructions for execution from a very large pool of
threads, waiting for memory to become available to run the
next thread.

A CPU can be configured for a CPU thread hierarchy
which includes a currently running list and a pool of
non-running threads enabled to receive information perti-
nent to computational limits from devices or components
such as special-purpose hardware.

Computational Limits

A limit on computation can be imposed according to
setting of priority level which is, in turn, based on available
resources. One example resource that can be monitored to
set limits on computation is the battery. Limits on compu-
tation can be imposed based on battery consumption, battery
life remaining. Computational limits can be addressed via a
framework of setting capabilities, for example specifying a
capability to execute on selected processing resources. In an
example implementation, the capability can be set up in
metadata.

Addressing computational limits can be fairly complex,
involving not only information from monitored resources
but also user input. For example, a determination by hard-
ware of low battery level and associated limited battery life
can be overridden by a user who may request a software
application to run in anticipation of being able to soon
recharge the battery at a line power source.

Performance Capabilities

A performance capabilities framework can be defined to
address handling of a pool of available resources. A thread
pool pattern can be configured wherein a number of threads
are created to perform a number of tasks which are typically
organized in a queue. Usually, the number of tasks is greater
than the number of threads. A thread upon completing an
associated task will request the next task from the queue
until all tasks have completed. The thread can then terminate
or become inactive until new tasks are available. The
number of threads can be tuned to improve performance, and
can be dynamically updated based on the number of waiting
tasks. Increasing the size of the thread pool can result in
higher resource usage.

A hardware scheduler can respond to any countable or
measurable operating condition or parameter, for example
electrons, constraints, frequency, cycles, power, voltage, and
the like, to control the thread pool and pool of resources.
Two highly useful conditions or parameters for monitoring
are power and cycles, which are the basis for other measur-
able phenomena. Monitoring of operating conditions can be
performed in hardware or via software call.

Furthermore, software can associate capabilities with
particular objects such as libraries.

In an example embodiment, a software model can be
configured to use and enforce performance capabilities. In a
relatively simple operation, if power is too low, then the
software can limit the maximum number of threads or other

US 9,471,373 B2

13

capabilities. For example, in a cell processor case the
number of threads can be limited to less than 1000. Funda-
mentally, software can disable functionality if sufficient
power is unavailable for scheduled operations.

In another example, a sensor or sensors can detect
whether battery bias voltage level is recovering too slowly
or, similarly, a thermistor can indicate a battery is too hot
which may indicate operating at too aggressive a level. A bit
or bits can be set indicating the recovery time is too long.
The set bit(s) can be used to throttle the maximum thread
hopping rate in the case of a CPU with two threads. The bits
disallow a thread hop and set an allowable rate of thread
hopping; or perhaps allow thread hopping which creates
slowing but saves power.

An example of performance capability monitoring and
management can be implemented in a CPU with four
process threads each having instruction pointers. One of the
four threads is selected to execute for next instruction cycle.
Various types of information can be monitored to determine
which thread to select including recent demand for power,
memory, CPU cycles, and the like. For example, a process
can be a resource glutton and allocated fewer resources to
enable other processes priority. Information is available
relating to recent performance, requested performance, and
acceptable performance (niceness).

Another option is to use a “NICE” instruction which can
be used to adjust the priority level of predetermined instruc-
tions, enabling the instructions to be run in the background
at a convenient time. For example, if a processor or battery
is running too hot, the NICE instruction can reduce the
urgency of executing code. In a particular example imple-
mentation, the NICE instruction can change a multiplier and
step of a decay algorithm.

High and low capabilities can be specified. For example,
a particular software routine can sometimes, although rarely,
use floating point operations so the capability for such
routines can be set low. Operations performed by software
can include monitoring, configuring parameters, and the
like.

A predictive hint can also be used to allocate resources.
For example, a software routine can use a hint a prediction
of a significant amount of floating point usage. A HINT
instruction can be included in the routine. In another version,
at the beginning of a library function, code can be inserted
to enable predictive preferential scheduling. The HINT
instruction can be part of the library, for example at the
beginning, or associated with the library. Code can be
inserted in the library, such as at the beginning of a library
function requesting particular resources, for example for
preferential scheduling. In one example form, a call to a
system call can request the operating system to allocate
more resources. In another example form, a hint instruction
can be sent to hardware to implement the hint and the
hardware responds by using the hint in hardware scheduling,
such as push, pop, pull, stack, or the like. The hint instruc-
tion typically has no direct effect on program execution. The
program will run correctly except for changes in perfor-
mance and battery life.

Predictive hints can also be implemented other than with
a hint instruction. Rather than an instruction, the hint may be
part of the data structure. For example, X number of bits can
relate to expected capabilities to which a process can be
entitled such as a vector or a structure. Software can
determine information for a performance descriptor, then
fills in the data so that metadata of a descriptor determines
importance of the performance descriptor.

10

15

20

25

30

35

40

45

50

55

60

65

14

Accordingly, predictive hints can be implemented in
hardware, software, the instruction set architecture, or a
combination of configurations. Hardware is typically more
constrained than a software implementation. A software
library enables the hint to be passed in a linked list of hash
trees for passage into hardware, for example as a 128-bit or
256-bit register. Such an implementation can be imple-
mented in an application programming interface (API) but
sufficiently simple to be part of hardware. Thus, the API can
be designed, then simplified sufficiently to put into hard-
ware.

Capabilities can be used to implement security. Typically,
a system has only a few predetermined capabilities. How-
ever, a system can be configured in which every memory
addressing register is assigned a capability. If the register
specifies a capability to access the associated memory
location, the location can be accessed. Otherwise, access is
prohibited, for example producing a fault or incrementing
counter or accumulator which can be noted in an intrusion
vector. For any aspect related to security, if a test is failed,
the counter is incremented and placed in the intrusion vector.

An instruction can be specified in an instruction set which
sets a capability. In various embodiments, the instruction can
be implemented in software, hardware, the operating sys-
tem, or the like. The instruction can operate in association
with a capabilities vector. In some embodiments, the instruc-
tion can also or otherwise operate in association with a hint
vector.

The capabilities vector can be associated with a pointer,
an address, and an object. A highly basic capability is a
lower bound and an upper bound. Other more complex
capabilities can be implemented. In various implementa-
tions, the capabilities vector and the entitlement vector can
be separate, or can be combined. Merging the capabilities
vector and the entitlement vector enables software structur-
ing.

The capabilities vector can be used to enable fine-grained
permission. Fine-grained permission facilitates operations
of multiple users or entities in a shared memory data base,
enabling the multiple users to access storage such as disk
and to perform system calls, but limit access to data only to
the user who owns the data or is authorized to access the
data. Another benefit of fine-grained permissions is an
ability to facilitate and improve security while multiplexing
software threads onto hardware threads. In an example
configuration, 64000 software threads are multiplexed onto
only four hardware threads. Only a small portion of the
software threads are running at one time with the remaining
software threads idle. The software threads alternately run
on the hardware threads, then go back to idle to allow other
software threads to run.

A classic security hole in a database management is the
inability to limit access to data for the different software
threads multiplexed onto the hardware threads. A database
typically does not allocate a hardware thread to a user. In
typical database operation, a request is received and placed
on a software thread so that users are multiplexed onto the
software threads, an action giving very little protection.
Better protection is attained by allocating each user to a
separate process, a technique that is prohibitively expensive
because the threads are expensive. Multiplexing the users
onto software threads leaves a security hole because access
to a particular user’s data allowed while running the user’s
software thread on a hardware thread is not removed when
the user’s software thread is swapped out from the hardware

US 9,471,373 B2

15

thread. The access permission remains so access remains
enabled. The depicted system solves the security hole by
using capabilities.

In a non-capabilities system, any of the software threads
can access the entire database at any time, including any data
that has been placed in shared memory (unless a call out is
made through the operating system to enable any of the
threads to create 1/0, a prohibitively expensive operation).
Simple databases only have one peer thread so all threads
can access any data. Many typical databases have 64 threads
that can access any data in shared memory but only four
threads that can access 1/0. These systems sometimes have
different privilege levels (for example, Intel’s rings 0, 1, 2,
3) so specity compatibility. Most code runs in ring 3 and the
kernel in ring 0. Rings 1 and 2 are generally not used
although several databases have features that can run in ring
1 and ring 2 but are rare and used primarily for benchmarks
(a benchmark hack).

In an example implementation that uses capabilities,
generally a processor has 16 or 32 registers, some of which
are addressing registers. A capability can be loaded to enable
access to selected threads. A capability can be loaded to
access a particular thread (owned by another user) into
hardware thread 0, enabling running as that user. This is one
type of context switch—to change the software thread that
is executing on hardware thread 0. The capability registers
can then be changed, a minor context switch and a change
in privilege level. The action does not invalidating transla-
tion lookaside buffer (TLBs), but rather moves the permis-
sions out of the TLB. The access control model is also
changed. Capabilities can be used in this manner to change
operations, guaranteeing only access to data and/or
resources for which access is allowed by a permission-
granting entity. Capabilities can guarantee a transitive expo-
sure of only the data and/or resources of another user
according to granted authorization. The technique is deter-
ministic so that, by inspection, which accesses are possible
is known.

Translation Lookaside Buffer TLB.

A translation lookaside buffer (TLB) is a processor cache
which can be used by memory management hardware to
improve virtual address translation speed. Processors use a
TLB to map virtual and physical address spaces. TLB are
used widely in hardware which uses virtual memory.

The TLB can be implemented as content-addressable
memory (CAM), using a CAM search key which is the
virtual address to produce a search result which is a physical
address. If the TLB holds the requested address—called a
TLB hit, the CAM search quickly yields a match and the
retrieved physical address can be used to access memory. If
the TLB does not hold the requested address—a TLB miss,
the translation proceeds by looking up the page table in a
process called a page walk. The page walk is computation-
ally expensive process, involving reading contents of mul-
tiple memory locations and using the contents to compute
the physical address. After the page walk determines the
physical address, the virtual address to physical address
mapping is entered into the TLB.

A stream monitoring instruction can improve efficiency
and performance of the TLB by supporting a software
predictor. The instruction can be used to monitor misaligned
or split access. A memory access is aligned when the data
item accessed is n-bytes long and the data item address is
n-byte aligned. Otherwise, the memory access is misaligned.
Monitoring for misaligned access can be performed by
hardware, resulting in a trap, or somewhat less efficiently by
software. In practice, monitoring for misaligned access has

20

40

45

50

55

16

a high false positive rate, for example approaching 90%. A
predictor can be configured, for example by micro-architec-
ture adjustment, to indicate whether the misaligned access
hits are accurate.

A processor can be configured to change voltage, fre-
quency, and/or power based on the number of cache misses.
For example, logic can detect an abundance of cache misses
or other performance problems, the voltage can be varied
such as increased to cure the problem. The logic can
dynamically adjust operating parameters according to the
amount of traffic. Frequency and voltage can be adjusted, for
example whenever a change in frequency occurs, the voltage
can be modified accordingly.

Logic in a memory interface can detect when memory is
full to some threshold level, for example 70%. If memory is
full to the threshold level and a high level of access is
occurring, memory speed can decrease. In response, the
frequency and voltage of operation can be dynamically
increased to maintain a desired memory speed.

In various embodiments, logic for performing dynamic
adjustment can be positioned in memory, in a logic interface,
in a processor. A hardware configuration can optimize by
active adjustment, redirection, or possibly a combination of
adjustment and redirection. For example, a computation-
intensive process with many instructions to be executed
rapidly can be addressed by running the processor at a higher
rate by increasing operating frequency and voltage, and/or
some of the burden can be shifted to components other than
the processor to maintain processor execution at a lower
frequency.

Infrastructure.

An infrastructure configured to support multiple proces-
sors in a system can have a shared memory and message
passing between threads, processes, processors, and the like.
Operating systems (OS) can include various mechanisms to
enable message passing, for example pipelines, daemons
that use sockets, loopback, and the like. Any suitable number
of processors can be supported in the system, from relatively
small systems with few processors to large scale systems
with hundreds of thousands or millions of processors. In a
typical large scale system, the multitudes of processors
communicate via fat trees which support the large amount of
bandwidth demanded by the large scale system. The amount
of bandwidth in different positions in the tree is variable,
depending on traffic. In various other configurations, the
many processors can communicate via meshes or buses, via
Gigabit Ethernet, via CDMA-CE (Code Division Multiple
Access—series CE), and the like. In large interconnects, the
number of processors determines what functionality is
attainable. For example, for more than about 1000 proces-
sors, memory can no longer be shared. At around 100
processors, memory space can be shared but cache-coher-
ence is typically not possible and memory is thus non-cache-
coherent shared memory. Cache-coherence is generally con-
sidered to cause problems for more than about sixteen
processors so that fewer processors at a first level can have
cache-coherent shared memory.

For a supercomputer or other system with the large
number of processors, for example more than about 1000,
for which memory is non-shared, Message Passing Interface
(MPI) can be used for communication. MPI uses multiple
threads but does not use shared memory. The MPI multiple
threads are all part of local shared memory, but no global
shared memory exists. The amount of local shared memory
is limited, resulting in a communications bottleneck. Super-
computer memories use Message Passing Interface (MPI)
which, to a first order, includes a limited number of instruc-

US 9,471,373 B2

17

tions such as send some location, buffer, end buffer, and
receive some entity, buffer, end buffer, and the like. MPI is
an application programming interface (API) and is thus a
library call. The received entity can be, for example, a
channel connecting the sender and the receiver, although
channels are rarely used in MPI since channels do not scale
beyond about a thousand processors. Accordingly, MPI can
use commands with masks which identify which processors
are to receive a message. A difficulty with MPI is that
different code must be written, and a different core engine
and interface, for small-scale and large-scale parallelism.
Thus, send-and-receive communication such as is used by
MPI is suitable if memory is shared.

What is desired is a technique for expanding send-and-
receive communication more broadly. In accordance with
system and method embodiments, a communications appli-
cation programming interface (API) can be created that
enables communication between different types of threads
and hides that the threads are sharing memory. The com-
munications API can enhance functionality of a Transmis-
sion Control Protocol (TCP) socket. The TCP socket, also
termed an Internet socket for network socket, is an endpoint
of a bidirectional inter-process communication flow across
and Internet Protocol (IP)-based computer network such as
the Internet. In some embodiments, the communications API
can also incorporate functionality of MPI into that of a TCP
socket. In a distributed system, a processor can communi-
cate with a Network Interface Controller (NIC) and a send
instruction puts data on a queue to send to the NIC and pass
through the routing network to a specified destination. The
communications API can perform communications via TCP-
IP, in some configurations optimizing aspects of TCP-IP
such as by ordering packets, and also via other protocols.
The communications API can include send-and-receive
functionality, and include one or more channels, which is
operable with TCP-IP. Some of the channels can be shared
memory in the form of a buffer with a counter. Some
channels can connect to the NIC, some channels to TCP-IP,
and some channels can have other functionality. In some
embodiments, the communications API can support different
types of channels. One example of a channel type is simply
registers. Another type of channel can run two hardware
threads with a pipeline coupled between the two threads.

The communications API can be adapted to handle the
possibility of overflow. For example, for a channel imple-
mented as shared registers, filling the registers to capacity
can cause overflow to memory, which can call a trap or
exception.

Another technique for expanding send-and-receive com-
munication more broadly can comprise creating a message
passing infrastructure in hardware. Speed is one advantage
of forming the message passing infrastructure in hardware.
For example in the case of a system call, conventionally a
slow operation, hardware can be configured to support a
send instruction operable to check a bit in a channel selected
for the send operation to determine whether the channel is
available and, if not, performing a system call by faulting to
the system call. Thus, the hardware can be configured to pass
execution through the operating system in response to
desired conditions.

In an example embodiment, the message passing infra-
structure hardware can be configured to avoid passing
execution through the operating system, for example to
avoid the context switch inherent with going to the operating
system. In another example embodiment, the hardware can
be configured to include a message passing paradigm and
one core can be run in ring 0 to enable access to operating

10

15

20

25

30

35

40

45

50

55

60

65

18

system calls. The operating system is not a separate process
but rather a library call in a library. Another option is to
allocate a hardware thread to the operating system.

The operating system performs a ring 0 call via a system
call which, in terms of hardware implementation, can be a
function call to change a bit, granting permission to change
the bit, and identification of the stack from which the OS is
operating. In one example implementation, the user can
explicitly control the stack, for example by placing the
operating system stack in a different register. In another
implementation, a system call can change the instruction
pointer and the stack.

The message passing infrastructure hardware implemen-
tation can, for example, include support for send and receive
calls. The hardware implementation can enable faster oper-
ating speed. For particular special cases, hardware send and
receive calls can be faster than a shared library call. Send
and receive are global messages, supporting point-to-point
communication in two-party messaging. In some embodi-
ments, the hardware implementation can support put and get
APIs to enable sending a message to a designated address
asynchronously or synchronously, as selected. The desig-
nated address is in a global address space partition, not local
load-store. The put and get APIs can handle access to shared
physical memory by sending a request to the master or
server for the designated memory location. The memory is
hashed across all the global memory space. In the illustrative
implementation, get and put can be system calls rather than
instructions, thus facilitating global access. Because the get
and put system calls are relatively resource-expensive, effi-
ciency can be attained by communicating blocks of data, for
example 64K, at one time rather than for individual bytes.

For a cache-coherent shared memory that is accessed
using the put and get system calls, different schemes can be
used depending on what entities are communicating. For
entities which share memory, the get and put calls simply
access the shared memory. For entities separated by sub-
stantial physical or network distances, the get and put calls,
if unable to fulfill the call by shared memory access, by
running through the same router or similar local actions can
send the calls to the network interface to relay remotely, for
example across the world. For shared memory, whether
cache-coherent or cache-noncoherent, the put and get, and
send and receive operations are relatively simple since all
entities can access the same memory. More complexity
arises when memory is not shared. In various embodiments,
when memory is not shared different schemes can be used
such as copy-on-write (copying the shared memory), creat-
ing in remote memory the shared memory that shares the
same capability, an implicit in the put and get, or other
options.

The message passing infrastructure thus can include hard-
ware support for the various put and get, send and receive,
or the like system calls or instructions. The message passing
infrastructure can be configured to enable two threads to be
forked and used with the put and get calls to enable optimum
speed performance. The send and receive, and put and get
instructions, as described, consume two hardware threads or
might consume two passive threads.

In some embodiments, the put-get and send-receive can
be combined with access bits which designate memory to
which the sender is allowed access. Passing along the access
bits can enable a reduction in overhead while enabling
protection across processes. The overhead of switching or
sending a message drops significantly because the receiver
already knows the memory to which the sender has access.

US 9,471,373 B2

19

Referring to FIGS. 1A, 1B, 1C, and 1D, schematic block
diagrams show embodiments of an information handling
apparatus 100 adapted to facilitate resource allocation. An
entitlement vector can be used as a hint for an object. Logic
(or manual determination) can ascertain and/or specify what
resources/capabilities are to be used by an object. Informa-
tion can be included, for example at the beginning of an
object, to request particular resources in terms of the entitle-
ment vector. In some embodiments, a code can be included
in an object such as a library, to request particular resources.
The request can be a request for preferential scheduling,
especially with regard to resources. Such code may be a hint,
a data structure, a set of one or more bits, etc. in the library.
In an illustrative embodiment, an information handling
apparatus 100 can comprise an entitlement vector 104
operable to specify resources 108 used by one or more
objects 102 of a plurality of a plurality of objects 102, and
logic 106 operable to issue a hint instruction 114 based on
the entitlement vector 104 for usage in scheduling the
resources 108.

In some embodiments and/or implementations, the hint
instruction 114 can be used in compiled code. In various
other embodiments, the hint instruction 114 can be applied
at runtime. For a hint instruction 114 used with a compiler,
when the compiler converts the hint instruction 114 to
executed instructions, the hint instruction 114 can be
inserted into the code. Hint instructions are a form of explicit
hints, which ensure that a particular object 102 is allocated
specified resources 108 or a specified portion of the
resources 108. In other applications, a hint instruction 114
can ensure that the specified resources 108 or a specified
portion of the resources 108 allocated to the object 102 does
not change until countermanded by a subsequent “unhint”
instruction. In either case, the hint instructions can act as
no-operation instructions, except that the usage of resources
108 is controlled.

For a hint instruction 114 which is applied by a compiler,
resources 108 can be allocated in a predetermined manner or
in compliance with a programmed analysis of program and
resource structure. The entitlement vector 104 enables actual
tracking of resource usage during runtime, enabling usage
history to be used for predicting future usage and allocation
of resources 108 among the plurality of objects 102.

Resource allocation can be handled via various architec-
tural aspects of a system including microarchitecture,
instruction set architecture (ISA), operating system, and
library calls. Software can associate capabilities with par-
ticular library functions or software objects. This software
can be in the form of compiler, operating system, or others.
The operating system can, for example, create a profile for
any process running floating point operations and give that
entitlement. Resources allocated include processors, central
processing units (CPUs), graphics hardware, network con-
trollers, memory, memory management, other hardware, and
the like. Resources further include power, cycles, and the
like. Thus, in various embodiments of the information
handling apparatus 100, the plurality of resources 108 can
comprise physical/logical resources 110 and operational
resources 112.

The physical/logical resources 110 of a particular infor-
mation handling apparatus 100 can be one or more of
physical and/or logical instances of processors 116, central
processing units (CPUs) 117, graphics hardware 118, net-
work controllers 119, memory 120, memory management
121, hardware 122, microarchitecture 123, sound cards 124,
video cards 125, network interfaces 126, instruction set

10

15

20

25

30

35

40

45

50

55

60

65

20
architecture (ISA) 127, library calls 128, library functions
129, software objects 130, compilers 131, operating systems
132, and the like.

Resources can be allocated in response to any countable
or measurable operating condition or parameter, for example
electrons, constraints, frequency, cycles, power, voltage, and
the like, to control the thread pool and pool of resources.
Two highly useful conditions or parameters for monitoring
are power and cycles, which are the basis for other measur-
able phenomena. Monitoring of operating conditions can be
performed in hardware or via software call. Thus, in various
embodiments and/or applications of the information han-
dling apparatus 100, the operational resources 112 can be
one or more entities or phenomena including, for example,
power 133, voltage 134, current 135, electrons 136, fre-
quency 137, execution cycles 138, battery consumption 139,
battery life 140, constraints 141, temperature 142, and
measurable phenomena 143, and the like.

Power is typically global to a process or to an individual
CPU. Use of capabilities enables more refined control of
power, for example power can be made specific to an object
or library routine. With power global to a process, the
process will continue to run in absence of a fault, a page
fault, a disk access, or the like, and will run until blocked by
the operating system scheduler, allowing high power con-
sumption. Use of capabilities enables power to be controlled
on a per-hardware thread granularity. Use of capabilities
further enables power to be controlled specific to a per-
hardware thread granularity for throttling power. Accord-
ingly, the information handling apparatus 100 can be con-
figured wherein the entitlement vector 104 is operable to
specify resources 108 and capabilities 144 used by the at
least one object 102.

Similarly, in some embodiments of the information han-
dling apparatus 100, the entitlement vector 104 is operable
to ascertain and specify resources 108 and capabilities 144
used by the one or more objects 102.

Logic, such as in hardware or software, or a manual
determination, can ascertain and/or specify what resources/
capabilities are to be used by an object. Some embodiments
of the information handling apparatus 100 can further com-
prise logic 146 operable to ascertain and specify the
resources 108 used by at least one object 102 of a plurality
of a plurality of objects 102, and operable to set the
entitlement vector 104 in accordance with the ascertained
and specified resources 108.

Similarly, in various embodiments of the information
handling apparatus 100, the logic 146 operable to ascertain
and specify the resources 108 can be operable to ascertain
resources 108 and/or capabilities 144 used by an object 102
of the plurality of objects 102 and further operable to set the
entitlement vector 104 according to the ascertained
resources 108 and/or capabilities 144.

In some embodiments and/or applications of the informa-
tion handling apparatus 100, the hint instruction 114 can
activate the entitlement vector 104 as a request for resources
108 and can be applied to hardware 122 which uses the
entitlement vector 104 for scheduling of the one or more
objects 102 of a plurality of a plurality of objects 102.

Also in some implementations of the information han-
dling apparatus 100, the hint instruction 114 can be operable
to power down hardware 122 in a condition that the entitle-
ment vector 104 indicates the hardware 122 is not used by
the one or more objects 102 of a plurality of a plurality of
objects 102.

In another aspect of operation, the hint instruction 114 can
be operable as a predictive hint designating resources 108

US 9,471,373 B2

21

which are predicted to be used by the one or more objects
102 of a plurality of a plurality of objects 102.

Libraries or other objects (and associated threads) can
request entitlements. Objects use resources to execute. For
example, a networking library has greater usage of a net-
work resource than other libraries or objects. Particular
entitlements may be assigned to individual library routines
using an entitlement vector, which can indicate expected
capabilities to which an object may be entitled. Entitlements
may be assigned via the entitlement vector. An entitlement
vector may be used when selecting a thread for execution in
a multi-threading environment in terms of aspects such as
priority. Accordingly, in some embodiments and/or applica-
tions of the information handling apparatus 100, for example
as shown in FIG. 1B, can include a library 148 comprising
a plurality of functions 150 and components 152 operable to
handle the plurality of objects 102. The entitlement vector
104 can be operable to assign entitlement 154 to at least one
of a plurality of resources 108 to selected ones of the
plurality of functions 150 and components 152. The entitle-
ment 154 can be specified as predetermined rights wherein
a process 156 of a plurality of processes 156 is entitled to a
predetermined percentage of operational resources 112.

In some implementations, entitlement 154 can be set
according to a predetermined algorithm which defines a “fair
share” for the processes, for example round-robin, history-
based, randomized, and the like, which are efficient since a
large history need not be accumulated. Thus, an efficient and
inexpensive hardware implementation is possible. A particu-
lar scheme can allocate modulo by bit to avoid starving a
process with lower entitlement 154.

In some embodiments and/or applications of the informa-
tion handling apparatus 100, the logic 146 operable to
ascertain and specify the resources 108 can be operable to
ascertain resources 108 and/or capabilities 144 included in a
library 148. The logic 146 can be further operable to request
the ascertained resources 108 and/or capabilities 144.

Also in some implementations of the information han-
dling apparatus 100, the logic 146 operable to ascertain and
specify the resources 108 can be operable to ascertain
resources 108 and/or capabilities 144 included in a library
148. The logic 146 can be further operable to request
preferential scheduling of the ascertained resources 108
and/or capabilities 144.

The information handling apparatus 100 can be config-
ured to support prioritized entitlements and resource allo-
cations upon calling selected libraries. A typical embodi-
ment includes such support in software, although hardware
support can also be implemented. For example, a network
library can include library routines adapted for heavy net-
work usage so that resources giving access to the network
are more important processes to schedule. More entitlements
are allocated to network-related resources. Libraries can also
be configured to handle secondary priorities that change
dynamically. For example, a sound card can have a greater
power priority and have a pattern of operation wherein a
process uses a network card and possibly other subsystems
in combination with the sound card. Thus, the network card
and other subsystems can also be allocated a higher priority.
Similarly, for a process which performs less modeling and
number computation in lieu of higher input/output opera-
tions and sending of information, a higher level of priority
can be allocated to input/output resources.

A library is a collection of resources used to develop
software, including pre-written code and subroutines,
classes, values, or type specifications. Libraries contain code
and data to enable services to independent programs,

5

10

15

20

25

30

35

40

45

50

55

60

65

22

encouraging code sharing, modification, and distribution.
Executables can be both standalone programs and libraries,
although many libraries are not executable. Executables and
libraries make references known as links to each other
through the process known as linking, for example by using
a linker.

Referring to FIG. 1C, some embodiments of the informa-
tion handling apparatus 100 can further comprise resource
allocation logic 158 operable to dynamically modify the
entitlement vector 104 according to usage of resources 108
by at least one object 102 of a plurality of a plurality of
objects 102 wherein the hint instruction 114 supplies the
entitlement vector 104.

In further embodiments, the information handling appa-
ratus 100 can further comprise a scheduler 160 operable to
schedule a process 156 of a plurality of processes 156 based
on entitlement 154.

Referring to FIG. 1D, a scheduler or chooser can monitor
entitlement values and schedule the next highest priority
process. A particular scheme can allocate modulo by bit to
avoid starving a process with lower entitlement. In some
conditions, the level of entitlement can be overridden or
adjusted. Entitlement can be set according to a predeter-
mined algorithm which defines a “fair share” for the pro-
cesses, for example round-robin, history-based, randomized,
and the like, which are efficient since a large history need not
be accumulated.

A field of the entitlement vector can be a chooser/thread
selector. The entitlement vector can be used by the chooser/
scheduler, which includes logic that performs operations
based on a single entitlement vector or possibly relative
entitlement vectors. Each Instruction Pointer (IP) or thread
can have an associated entitlement vector. For example
instruction pointers, for IP1, IP2, 1P3, IP4, then four entitle-
ment vectors can be allocated. Chooser/scheduler logic
considers the entitlement vector when scheduling the next
thread for computation. The logic informs the chooser/
scheduler about how to make the selection. The logic can
perform selected functions to make the choice and for
scheduling, for example by elevating or decreasing priority
of a thread. Thus, embodiments of the information handling
apparatus 100 can be configured as a multi-threaded envi-
ronment 162 and can further comprise a scheduler 160
operable to schedule a thread 164 of a plurality of threads
164 in the multi-threaded environment 162 based on entitle-
ment 154.

A performance capabilities framework can be defined to
address handling of a pool of available resources. A thread
pool pattern can be configured wherein a number of threads
are created to perform a number of tasks which are typically
organized in a queue. Usually, the number of tasks is greater
than the number of threads. A thread upon completing an
associated task will request the next task from the queue
until all tasks have completed. The thread can then terminate
or become inactive until new tasks are available. The
number of threads can be tuned to improve performance, and
can be dynamically updated based on the number of waiting
tasks. Increasing the size of the thread pool can result in
higher resource usage.

A limit on computation can be imposed according to
setting of priority level which is, in turn, based on available
resources. One example resource that can be monitored to
set limits on computation is the battery. Limits on compu-
tation can be imposed based on battery consumption, battery
life remaining. Computational limits can be addressed via a
framework of setting capabilities, for example specifying a

US 9,471,373 B2

23

capability to execute on selected processing resources. In an
example implementation, the capability can be set up in
metadata.

A sensor or sensors can detect whether battery bias
voltage level is recovering too slowly or, similarly, a therm-
istor can indicate a battery is too hot which may indicate
operating at too aggressive a level. A bit or bits can be set
indicating the recovery time is too long. The set bit(s) can be
used to throttle the maximum thread hopping rate in the case
of a CPU with two threads. The bits disallow a thread hop
and set an allowable rate of thread hopping; or perhaps allow
thread hopping which creates slowing but saves power.

The entitlement vector can be used to enable dynamic
runtime updating of hints in program instructions. The
entitlement vector can be used to track resource usage by an
object or process and to develop hint performance data in
terms of performance changes resulting from application of
a hint instruction. Through updating of the entitlement
vector and application of the entitlement vector to instruc-
tion execution, dynamic hint updates are applied to instruc-
tions. Accordingly, referring to FIGS. 2A, 2B, and 2C,
schematic block diagrams show embodiments of an infor-
mation handling apparatus 200 adapted to allocate resources
based on a received hint instruction. Accordingly, in an
illustrative embodiment, an information handling apparatus
200 can comprise logic 206 operable to receive a hint
instruction 214 comprising an entitlement vector 204 that
specifies resources 208 used by at least one object 202 of a
plurality of a plurality of objects 202. The information
handling apparatus 200 can further comprise resource allo-
cation logic 258 operable to dynamically modify the entitle-
ment vector 204 according to usage of resources 208 by the
at least one object 202 of the plurality of a plurality of
objects 202.

In various embodiments of the information handling
apparatus 200, the plurality of resources 208 can comprise
physical/logical resources 210 and operational resources
212. The physical/logical resources 210 of a particular
information handling apparatus 200 can be one or more of
physical and/or logical instances of processors 216, central
processing units (CPUs) 217, graphics hardware 218, net-
work controllers 219, memory 220, memory management
221, hardware 222, microarchitecture 223, sound cards 224,
video cards 225, network interfaces 226, instruction set
architecture (ISA) 227, library calls 228, library functions
229, software objects 230, compilers 231, operating systems
232, and the like. In various embodiments and/or applica-
tions of the information handling apparatus 200, the opera-
tional resources 212 can be one or more entities or phenom-
ena including, for example, power 233, voltage 234, current
235, electrons 236, frequency 237, execution cycles 238,
battery consumption 239, battery life 240, constraints 241,
temperature 242, and measurable phenomena 243, and the
like.

In some embodiments of the information handling appa-
ratus 200, the entitlement vector 204 is operable to ascertain
and specify resources 208 and capabilities 244 used by the
at least one object 202.

In some embodiments and/or applications, the informa-
tion handling apparatus 200 can further comprise logic 246
operable to ascertain and specify the resources 208 used by
at least one object 202 of a plurality of a plurality of objects
202. The logic 246 can be further operable to set the
entitlement vector 204 in accordance with the ascertained
and specified resources 208.

In an example embodiment of the information handling
apparatus 200, the logic 246 operable to ascertain and

10

15

20

25

30

35

40

45

50

55

60

65

24

specify the resources 208 can be operable to ascertain
resources 208 and/or capabilities 244 used by an object 202
of the plurality of objects 202. The logic 246 can be further
operable to set the entitlement vector according to the
ascertained resources 208 and/or capabilities 244.

Similarly, in some embodiments of the information han-
dling apparatus 200, the logic 246 operable to ascertain and
specify the resources 208 can be operable to ascertain
resources 208 and/or capabilities 244 included in a library
and operable to request the ascertained resources 208 and/or
capabilities 244.

The hint instruction 214 can have various aspects of
operation. For example, the information handling apparatus
200 can be configured such that the hint instruction 214
activates the entitlement vector 204 as a request for
resources 208 and is applied to hardware 222 which uses the
entitlement vector 204 for scheduling of the at least one
object 202 of a plurality of a plurality of objects 202.

In other embodiments and/or applications of the informa-
tion handling apparatus 200, the hint instruction 214 can be
operable to power down hardware 222 in a condition that the
entitlement vector 204 indicates the hardware 222 is not
used by the at least one object 202 of a plurality of a plurality
of objects 202.

Similarly, the hint instruction 214 can be operable as a
predictive hint designating resources 208 which are pre-
dicted to be used by the at least one object 202 of a plurality
of a plurality of objects 202.

Libraries can also be configured to handle secondary
priorities that change dynamically. For example, a sound
card can have a greater power priority and have a pattern of
operation wherein a process uses a network card and pos-
sibly other subsystems in combination with the sound card.
Thus, the network card and other subsystems can also be
allocated a higher priority. Similarly, for a process which
performs less modeling and number computation in lieu of
higher input/output operations and sending of information, a
higher level of priority can be allocated to input/output
resources. Accordingly, as depicted in FIG. 2B, an embodi-
ment of the information handling apparatus 200 can further
comprise a library 248 comprising a plurality of functions
250 and components 252 operable to handle the plurality of
objects 202. The entitlement vector 204 can be operable to
assign entitlement 254 to at least one of a plurality of
resources 208 to selected ones of the plurality of functions
250 and components 252. The entitlement 254 can be
specified as predetermined rights wherein a process 256 of
a plurality of processes 256 is entitled to a predetermined
percentage of operational resources 212.

Referring to FIG. 2C, an embodiment of the information
handling apparatus 200 can further comprise a scheduler 260
operable to schedule a process 256 of a plurality of processes
256 based on the entitlement 254.

Similarly, in some embodiments the information handling
apparatus 200 can further comprise a scheduler 260 operable
to schedule a thread 264 of a plurality of threads 264 in a
multi-threaded environment 262 based on the entitlement
254.

Referring to FIGS. 3A, 3B, and 3C, schematic block
diagrams show embodiments of an information handling
apparatus 300 adapted to determine usage of resources and
use this determination to form a hint instruction. Accord-
ingly, in an illustrative embodiment, an information han-
dling apparatus 300 can comprise resource allocation logic
358 operable to determine resources 308 used by at least one
object 302 of a plurality of a plurality of objects 302. The
information handling apparatus 300 can further comprise

US 9,471,373 B2

25

logic 306 operable to set an entitlement vector 304 based on
the determination of resources 308 and form a hint instruc-
tion 314 as a function of the entitlement vector 304.

In various embodiments of the information handling
apparatus 300, the plurality of resources 308 can comprise
physical/logical resources 310 and operational resources
312. The physical/logical resources 310 of a particular
information handling apparatus 300 can be one or more of
physical and/or logical instances of processors 316, central
processing units (CPUs) 317, graphics hardware 318, net-
work controllers 319, memory 320, memory management
321, hardware 322, microarchitecture 323, sound cards 324,
video cards 325, network interfaces 326, instruction set
architecture (ISA) 327, library calls 328, library functions
329, software objects 330, compilers 331, operating systems
332, and the like. In various embodiments and/or applica-
tions of the information handling apparatus 300, the opera-
tional resources 312 can be one or more entities or phenom-
ena including, for example, power 333, voltage 334, current
335, electrons 336, frequency 337, execution cycles 338,
battery consumption 339, battery life 340, constraints 341,
temperature 342, and measurable phenomena 343, and the
like.

In some embodiments, the information handling appara-
tus 300 can be configured wherein the resource allocation
logic 358 is operable to ascertain and specity resources 308
and capabilities 344 used by the at least one object 302. The
logic 306 operable to set an entitlement vector 304 can be
operable to set the entitlement vector 304 based on the
ascertained and specified resources 308 and capabilities 344
used by the at least one object 302.

Similarly, in some embodiments and/or applications, the
information handling apparatus 300 can be configured such
that the resource allocation logic 358 is operable to ascertain
and specify the resources 308 used by at least one object 302
of a plurality of a plurality of objects 302. The logic 306
operable to set an entitlement vector 304 can be operable to
set the entitlement vector 304 in accordance with the ascer-
tained and specified resources 308.

In further embodiments, the information handling appa-
ratus 300 can be formed such that the resource allocation
logic 358 is operable to ascertain resources 308 and/or
capabilities 344 used by an object 302 of the plurality of
objects 302. The logic 306 operable to set an entitlement
vector 304 can be operable to set the entitlement vector 304
according to the ascertained resources 308 and/or capabili-
ties 344.

The hint instruction 314 can have various aspects of
operation. For example, the hint instruction 314 can activate
the entitlement vector 304 as a request for resources 308 and
is applied to hardware 322 which uses the entitlement vector
304 for scheduling of the at least one object 302 of a
plurality of a plurality of objects 302.

In other embodiments, the hint instruction 314 can be
operable to power down hardware 322 in a condition that the
entitlement vector 304 indicates the hardware 322 is not
used by the at least one object 302 of a plurality of a plurality
of objects 302.

Similarly, the hint instruction 314 can be operable as a
predictive hint designating resources 308 which are pre-
dicted to be used by the at least one object 302 of a plurality
of a plurality of objects 302.

In further embodiments and/or applications, as shown in
FIG. 3B, the information handling apparatus 300 can be
constituted wherein the resource allocation logic 358 is
operable to ascertain and specify resources 308 and/or
capabilities 344 included in a library 348. The logic 306

10

15

20

25

30

35

40

45

50

55

60

65

26

operable to set an entitlement vector 304 can be operable to
request the ascertained resources 308 and/or capabilities
344.

The library 348 can comprise a plurality of functions 350
and components 352 can be operable to handle the plurality
of objects 302. The entitlement vector 304 can be operable
to assign entitlement 354 to at least one of a plurality of
resources 308 to selected ones of the plurality of functions
350 and components 352. The entitlement 354 can be
specified as predetermined rights wherein a process 356 of
a plurality of processes 356 is entitled to a predetermined
percentage of operational resources 312.

Referring to FIG. 3C, embodiments of the information
handling apparatus 300 can be adapted to allocate and
schedule resources according to usage. Accordingly, The
information handling apparatus 300 can further comprise a
scheduler 360 operable to receive the hint instruction 314
and schedule a process 356 of a plurality of processes 356
based on entitlement 354 specified by the hint instruction
314.

Similarly, the information handling apparatus 300 can be
configured to include a scheduler 360 operable to receive the
hint instruction 314 and schedule a thread 364 of a plurality
of threads 364 in a multi-threaded environment 362 based on
entitlement 354 specified by the hint instruction 314.

Referring to FIG. 4, a schematic block diagram shows
embodiments of an information handling apparatus 400
adapted to receive a hint instruction and schedule resources
accordingly. Thus, an information handling apparatus 400
can comprise logic 406 operable to receive a hint instruction
414 comprising an entitlement vector 404 that specifies
resources 408 used by at least one object 402 of a plurality
of a plurality of objects 402. In an illustrative embodiment,
entitlement 454 as indicated by the entitlement vector 404
can be specified as predetermined rights wherein a process
456 of a plurality of processes 456 is entitled to a predeter-
mined percentage of operational resources 412. The infor-
mation handling apparatus 400 can further comprise a
scheduler 460 operable to schedule the process 456 of the
plurality of processes 456 based on entitlement 454 specified
by the hint instruction 414.

In various embodiments of the information handling
apparatus 400, the plurality of resources 408 can comprise
physical/logical resources 410 and operational resources
412. The physical/logical resources 410 of a particular
information handling apparatus 400 can be one or more of
physical and/or logical instances of processors 416, central
processing units (CPUs) 417, graphics hardware 418, net-
work controllers 419, memory 420, memory management
421, hardware 422, microarchitecture 423, sound cards 424,
video cards 425, network interfaces 426, instruction set
architecture (ISA) 427, library calls 428, library functions
429, software objects 430, compilers 431, operating systems
432, and the like. In various embodiments and/or applica-
tions of the information handling apparatus 400, the opera-
tional resources 412 can be one or more entities or phenom-
ena including, for example, power 433, voltage 434, current
435, electrons 436, frequency 437, execution cycles 438,
battery consumption 439, battery life 440, constraints 441,
temperature 442, and measurable phenomena 443, and the
like.

In some embodiments, the information handling appara-
tus 400 can further comprise logic 446 operable to ascertain
and specify the resources 408 including ascertaining
resources 408 and/or capabilities 444 used by an object 402
of the plurality of objects 402. The logic 446 can be further

US 9,471,373 B2

27

operable to set the entitlement vector 404 according to the
ascertained resources 408 and/or capabilities 444.

The hint instruction 414 can have various aspects of
operation. For example, the hint instruction 414 can activate
the entitlement vector 404 as a request for resources 408 and
can be applied to hardware 422 which uses the entitlement
vector 404 for scheduling of the at least one object 402 of a
plurality of a plurality of objects 402.

In other embodiments, the hint instruction 414 can be
operable to power down hardware 422 in a condition that the
entitlement vector 404 indicates the hardware 422 is not
used by the at least one object 402 of a plurality of a plurality
of objects 402.

Similarly, the hint instruction 414 can be operable as a
predictive hint designating resources 408 which are pre-
dicted to be used by the at least one object 402 of a plurality
of a plurality of objects 402.

Referring to FIGS. 5A through 5H, schematic flow dia-
grams depict an embodiment or embodiments of a method
operable in an information handling apparatus adapted for
allocating resources. Referring to FIG. 5A, a method 500 for
handling information can comprise specifying 501 resources
used by at least one object of a plurality of a plurality of
objects in an entitlement vector, and issuing 502 a hint
instruction based on the entitlement vector for usage in
scheduling the resources.

In various embodiments, the resources can comprise
physical/logical resources and operational resources. The
physical/logical resources can comprise at least one of a
group consisting of physical and/or logical instances of
processors, central processing units (CPUs), graphics hard-
ware, network controllers, memory, memory management,
hardware, microarchitecture, sound cards, video cards, net-
work interfaces, instruction set architecture (ISA), library
calls, library functions, software objects, compilers, and
operating systems. The operational resources can comprise
at least one of power, voltage, current, electrons, frequency,
execution cycles, battery consumption, battery life, con-
straints, temperature, and measurable phenomena.

Referring to FIG. 5B, a method 505 for handling infor-
mation can further comprise ascertaining and specifying 506
the resources used by at least one object of a plurality of a
plurality of objects, and setting 507 the entitlement vector in
accordance with the ascertained and specified resources.

In various embodiments and/or applications, as illustrated
in FIG. 5C, a method 510 for handling information can
further comprise ascertaining and specitying 511 the
resources is operable to ascertain resources and/or capabili-
ties used by an object of the plurality of objects. The method
510 can further comprise setting 512 the entitlement vector
according to the ascertained resources and/or capabilities.

Various methods can deploy a hint instruction to perform
different aspects of operation. For example, as shown in
FIG. 5D, a method 515 for handling information can further
comprise receiving 516 the hint instruction, and activating
517 the entitlement vector as a request for resources as
specified by the hint instruction. The method 515 can further
comprise applying 518 the entitlement vector to hardware,
and using 519 the entitlement vector for scheduling of the at
least one object of a plurality of a plurality of objects.

In other embodiments and/or applications, as depicted in
FIG. 5E, a method 520 for handling information can further
comprise receiving 521 the hint instruction, determining 522
a condition that the entitlement vector indicates the hard-
ware is not used by the at least one object of a plurality of
a plurality of objects, and powering 523 down hardware
which is indicated as not-used.

10

15

20

25

30

35

40

45

50

55

60

28

Similarly, illustrated in FIG. 5F, a method 525 for han-
dling information can further comprise receiving 526 the
hint instruction, and using 527 the hint instruction as a
predictive hint designating resources which are predicted to
be used by the at least one object of a plurality of a plurality
of objects.

Furthermore, referring to FIG. 5G, a method 530 for
handling information can further comprise receiving 531 the
hint instruction, supplying 532 the entitlement vector via the
hint instruction, and dynamically modifying 533 the entitle-
ment vector according to usage of resources by the at least
one object of a plurality of a plurality of objects.

In additional embodiments, a method 535 for handling
information can schedule resources based on the hint
instruction. Accordingly, as shown in FIG. 5H, method 535
for handling information can further comprise specifying
536 entitlement as predetermined rights wherein a process of
a plurality of processes is entitled to a predetermined per-
centage of operational resources, and scheduling 537 a
process of a plurality of processes based on the entitlement.

Referring to FIGS. 6A through 6F, schematic flow dia-
grams depict an embodiment or embodiments of a method
operable in an information handling apparatus adapted to
allocate resources based on a received hint instruction.
Accordingly, in an illustrative embodiment, referring to FI1G.
6A, a method 600 for handling information can comprise
receiving 601 a hint instruction comprising an entitlement
vector that specifies resources used by at least one object of
a plurality of a plurality of objects, and dynamically modi-
fying 602 the entitlement vector according to usage of
resources by the at least one object of the plurality of a
plurality of objects.

In various embodiments, the resources can comprise
physical/logical resources and operational resources. The
physical/logical resources can comprise at least one of a
group consisting of physical and/or logical instances of
processors, central processing units (CPUs), graphics hard-
ware, network controllers, memory, memory management,
hardware, microarchitecture, sound cards, video cards, net-
work interfaces, instruction set architecture (ISA), library
calls, library functions, software objects, compilers, and
operating systems. The operational resources can comprise
at least one of power, voltage, current, electrons, frequency,
execution cycles, battery consumption, battery life, con-
straints, temperature, and measurable phenomena.

Referring to FIG. 6B, a method 605 for handling infor-
mation can further comprise ascertaining 606 resources
and/or capabilities used by an object of the plurality of
objects, and setting 607 the entitlement vector according to
the ascertained resources and/or capabilities.

In various embodiments and/or applications, as illustrated
in FIG. 6C, a method 610 for handling information can
further comprise activating 611 the entitlement vector as a
request for resources as specified by the hint instruction, and
applying 612 the entitlement vector to hardware. The
method 610 can further comprise using 613 the entitlement
vector for scheduling of the at least one object of a plurality
of a plurality of objects.

In further embodiments, depicted in FIG. 6D, a method
615 for handling information can further comprise deter-
mining 616 a condition that the entitlement vector indicates
the hardware is not used by the at least one object of a
plurality of a plurality of objects, and powering down 617
hardware which is indicated as not-used.

Several methods can deploy a hint instruction to perform
various aspects of operation. For example, as shown in FIG.
6FE, a method 620 for handling information can further

US 9,471,373 B2

29

comprise using 621 the hint instruction as a predictive hint
designating resources which are predicted to be used by the
at least one object of a plurality of a plurality of objects.

In additional embodiments, a method 630 for handling
information can schedule resources based on the hint
instruction. Accordingly, as shown in FIG. 6F, method 630
for handling information can further comprise specifying
631 entitlement as predetermined rights wherein a process of
a plurality of processes is entitled to a predetermined per-
centage of operational resources, and scheduling 632 a
process of a plurality of processes based on the entitlement.

Referring to FIGS. 7A through 7], schematic flow dia-
grams depict an embodiment or embodiments of a method
operable in an information handling apparatus adapted to
determine usage of resources and use this determination to
form a hint instruction. Accordingly, in an illustrative
embodiment, referring to FIG. 7A, a method 700 for han-
dling information can comprise determining 701 resources
used by at least one object of a plurality of a plurality of
objects, setting 702 an entitlement vector based on the
determination of resources, and forming 703 a hint instruc-
tion as a function of the entitlement vector.

In various embodiments, the resources can comprise
physical/logical resources and operational resources. The
physical/logical resources can comprise at least one of a
group consisting of physical and/or logical instances of
processors, central processing units (CPUs), graphics hard-
ware, network controllers, memory, memory management,
hardware, microarchitecture, sound cards, video cards, net-
work interfaces, instruction set architecture (ISA), library
calls, library functions, software objects, compilers, and
operating systems. The operational resources can comprise
at least one of power, voltage, current, electrons, frequency,
execution cycles, battery consumption, battery life, con-
straints, temperature, and measurable phenomena.

Referring to FIG. 7B, a method 705 for handling infor-
mation can further comprise ascertaining and specifying 706
resources and capabilities used by the at least one object; and
setting 707 the entitlement vector based on the ascertained
and specified resources and capabilities used by the at least
one object.

In various embodiments and/or applications, as illustrated
in FIG. 7C, a method 710 for handling information can
further comprise ascertaining and specitfying 711 the
resources used by at least one object of a plurality of a
plurality of objects, and setting 712 the entitlement vector in
accordance with the ascertained and specified resources.

Similarly, referring to FIG. 7D, a method 715 for handling
information can further comprise ascertaining 716 resources
and/or capabilities used by an object of the plurality of
objects, and setting 717 an entitlement vector is operable to
set the entitlement vector according to the ascertained
resources and/or capabilities.

Various methods can use a hint instruction to perform
several aspects of operation. For example, as shown in FIG.
7E, a method 720 for handling information can further
comprise receiving 721 the hint instruction, activating 722
the entitlement vector as a request for resources as specified
by the hint instruction, and applying 723 the entitlement
vector to hardware. The method 720 can further comprise
using 724 the entitlement vector for scheduling of the at least
one object of a plurality of a plurality of objects.

In other embodiments and/or applications, as depicted in
FIG. 7F, a method 725 for handling information can further
comprise receiving 726 the hint instruction, determining 727
a condition that the entitlement vector indicates the hard-
ware is not used by the at least one object of a plurality of

20

25

35

40

45

55

30

a plurality of objects, and powering down 728 hardware
which is indicated as not-used.

Similarly, illustrated in FIG. 7G, a method 730 for han-
dling information can further comprise receiving 731 the
hint instruction, and using 732 the hint instruction as a
predictive hint designating resources which are predicted to
be used by the at least one object of a plurality of a plurality
of objects.

Furthermore, referring to FIG. 7H, a method 735 for
handling information can further comprise receiving 736 the
hint instruction, supplying 737 the entitlement vector via the
hint instruction, and dynamically modifying 738 the entitle-
ment vector according to usage of resources by the at least
one object of a plurality of a plurality of objects.

In additional embodiments, a method 740 for handling
information can schedule resources based on the hint
instruction. Accordingly, as shown in FIG. 71, method 740
for handling information can further comprise receiving 741
the hint instruction, and scheduling 742 a process of a
plurality of processes based on entitlement specified by the
hint instruction.

Similarly, in a multi-threaded environment can be used for
scheduling resources according to the hint instruction. Thus,
as depicted in FIG. 7], a method 745 for handling informa-
tion can further comprise receiving 746 the hint instruction,
and scheduling 747 a thread of a plurality of threads in a
multi-threaded environment based on entitlement specified
by the hint instruction.

Referring to FIGS. 8A through 8D, schematic flow dia-
grams depict an embodiment or embodiments of a method
operable in an information handling apparatus adapted to
receive a hint instruction and schedule resources accord-
ingly. Thus, as illustrated in FIG. 8A, a method 800 for
handling information can comprise specifying 801 entitle-
ment as predetermined rights wherein a process of a plural-
ity of processes is entitled to a predetermined percentage of
operational resources, and specifying 802 resources used by
at least one object of a plurality of a plurality of objects in
an entitlement vector. The method 800 can further comprise
receiving 803 a hint instruction comprising the entitlement
vector, and scheduling 804 a process of a plurality of
processes based on entitlement specified by the hint instruc-
tion to selected ones of the plurality of functions and
components.

In various embodiments, the resources can comprise
physical/logical resources and operational resources. The
physical/logical resources can comprise at least one of a
group consisting of physical and/or logical instances of
processors, central processing units (CPUs), graphics hard-
ware, network controllers, memory, memory management,
hardware, microarchitecture, sound cards, video cards, net-
work interfaces, instruction set architecture (ISA), library
calls, library functions, software objects, compilers, and
operating systems. The operational resources can comprise
at least one of power, voltage, current, electrons, frequency,
execution cycles, battery consumption, battery life, con-
straints, temperature, and measurable phenomena.

Referring to FIG. 8B, a method 805 for handling infor-
mation can further comprise ascertaining and specifying 806
the resources is operable to ascertain resources and/or capa-
bilities used by an object of the plurality of objects, and
setting 807 the entitlement vector according to the ascer-
tained resources and/or capabilities.

In various embodiments and/or applications, as illustrated
in FIG. 8C, a method 810 for handling information can
further comprise activating 811 the entitlement vector as a
request for resources as specified by the hint instruction, and

US 9,471,373 B2

31

applying 812 the entitlement vector to hardware. The
method 810 can further comprise using 813 the entitlement
vector for scheduling of the at least one object of a plurality
of a plurality of objects.

In further embodiments, depicted in FIG. 8D, a method
815 for handling information can further comprise deter-
mining 816 a condition that the entitlement vector indicates
the hardware is not used by the at least one object of a
plurality of a plurality of objects, and powering down 817
hardware which is indicated as not-used.

Referring to FIG. 9, an embodiment comprises a com-
puter program product 900. The computer program product
includes a computer-readable storage medium 906 bearing
program instructions. The program instructions are operable
to perform a process in a computing device. The program
instructions can comprise program instructions 916 operable
to specify resources used by at least one object of a plurality
of a plurality of objects in an entitlement vector, and
program instructions 918 operable to issue a hint instruction
based on the entitlement vector for usage in scheduling the
resources.

In some embodiments, the computer program product can
further comprise program instructions 920 operable to
receive the hint instruction which comprises the entitlement
vector that specifies resources used by the at least one object
of a plurality of the plurality of objects, and program
instructions 922 operable to dynamically modify the entitle-
ment vector according to usage of resources by the at least
one object of the plurality of a plurality of objects.

In further embodiments and/or applications, the computer
program product can further comprise program instructions
924 operable to determine resources used by the at least one
object of a plurality of the plurality of objects, program
instructions 926 operable to set the entitlement vector based
on the determination of resources, and program instructions
928 operable to form the hint instruction as a function of the
entitlement vector.

In various embodiments, the computer program product
can include program instructions for scheduling resources.
Accordingly, the computer program product can further
comprise program instructions 930 operable to specify
entitlement as predetermined rights wherein a process of a
plurality of processes is entitled to a predetermined percent-
age of operational resources, program instructions 932 oper-
able to specify resources used by at least one object of a
plurality of a plurality of objects in an entitlement vector,
and program instructions 934 operable to receive a hint
instruction comprising the entitlement vector. The computer
program product can further comprise program instructions
936 operable to schedule a process of a plurality of processes
based on entitlement specified by the hint instruction to
selected ones of the plurality of functions and components.

Referring to FIG. 10, a schematic block diagram illus-
trates an embodiment of an information handling apparatus
1000 which is adapted to facilitate resource allocation. The
illustrative information handling apparatus 1000 can com-
prise means 1016 for specifying resources 1008 used by at
least one object 1002 of a plurality of a plurality of objects
1002 in an entitlement vector 1004, and means 1018 for
issuing a hint instruction 1014 based on the entitlement
vector 1004 for usage in scheduling the resources 1008.

In various embodiments, the information handling appa-
ratus 1000 can further comprise means 1020 for receiving
the hint instruction 1014 which comprises the entitlement
vector 1004 that specifies resources 1008 used by the at least
one object 1002 of a plurality of the plurality of objects
1002, and means 1022 for dynamically modifying the

5

10

15

20

25

30

35

40

45

50

55

60

65

32

entitlement vector 1004 according to usage of resources
1008 by the at least one object 1002 of the plurality of a
plurality of objects 1002.

In further embodiments and/or applications, the informa-
tion handling apparatus 1000 can further comprise means
1024 for determining resources 1008 used by the at least one
object 1002 of a plurality of the plurality of objects 1002,
means 1026 for setting the entitlement vector based on the
determination of resources 1008, and means 1028 for form-
ing the hint instruction 1014 as a function of the entitlement
vector 1004.

In various embodiments, the information handling appa-
ratus 1000 can include program instructions for scheduling
resources. Accordingly, the information handling apparatus
1000 can further comprise means 1030 for specifying
entitlement 1054 as predetermined rights wherein a process
1056 of a plurality of processes 1056 is entitled to a
predetermined percentage of operational resources 1012,
means 1032 for specifying resources 1008 used by at least
one object 1002 of a plurality of a plurality of objects 1002
in an entitlement vector 1004, and means 1034 for receiving
a hint instruction 1014 comprising the entitlement vector
1004. The information handling apparatus 1000 can further
comprise means 1036 for scheduling a process 1056 of a
plurality of processes 1056 based on entitlement 1054
specified by the hint instruction 1014 to selected ones of the
plurality of functions 1050 and components 1052.

Terms “substantially”, “essentially”, or “approximately”,
that may be used herein, relate to an industry-accepted
variability to the corresponding term. Such an industry-
accepted variability ranges from less than one percent to
twenty percent and corresponds to, but is not limited to,
materials, shapes, sizes, functionality, values, process varia-
tions, and the like. The term “coupled”, as may be used
herein, includes direct coupling and indirect coupling via
another component or element where, for indirect coupling,
the intervening component or element does not modify the
operation. Inferred coupling, for example where one element
is coupled to another element by inference, includes direct
and indirect coupling between two elements in the same
manner as “coupled”.

The illustrative pictorial diagrams depict structures and
process actions in a manufacturing process. Although the
particular examples illustrate specific structures and process
acts, many alternative implementations are possible and
commonly made by simple design choice. Manufacturing
actions may be executed in different order from the specific
description herein, based on considerations of function,
purpose, conformance to standard, legacy structure, and the
like.

While the present disclosure describes various embodi-
ments, these embodiments are to be understood as illustra-
tive and do not limit the claim scope. Many variations,
modifications, additions and improvements of the described
embodiments are possible. For example, those having ordi-
nary skill in the art will readily implement the steps neces-
sary to provide the structures and methods disclosed herein,
and will understand that the process parameters, materials,
shapes, and dimensions are given by way of example only.
The parameters, materials, and dimensions can be varied to
achieve the desired structure as well as modifications, which
are within the scope of the claims. Variations and modifi-
cations of the embodiments disclosed herein may also be
made while remaining within the scope of the following
claims.

US 9,471,373 B2

33

The invention claimed is:
1. An information handling apparatus comprising:
at least one processor including at least:
one or more entitlement vectors including at least one
field specifying one or more of physical/logical
resources or operational resources, and at least one
field specifying entitlement assigned to the one or
more of physical/logical resources or operational
resources accessed by one or more objects, wherein
the one or more entitlement vectors are specified as
one or more user-predetermined rights assigning
entitlement of the one or more objects to a prede-
termined percentage of the one or more of physical/
logical resources or operational resources;
one or more libraries including one or more library
routines associated with one or more functions or
components configured to handle the one or more
objects;
monitoring logic configured to monitor usage of the
one or more of physical/logical resources or opera-
tional resources;
instruction issue logic configured to issue one or more
instructions in an instruction set that includes one or
more hint instructions configured to specify which of
the one or more of physical/logical resources or
operational resources are to be used by the one or
more objects, wherein the one or more hint instruc-
tions are configured to activate at least one of the one
or more entitlement vectors; and
wherein at least one of the one or more library routines
is configured to compare the at least one of the one
or more entitlement vectors with respect to usage of
the one or more of physical/logical resources or
operational resources, and schedule the one or more
objects from a highest priority to a lowest priority
based at least in part on the comparison.
2. The information handling apparatus according to claim
1 wherein the one or more entitlement vectors including at
least one field specifying one or more of physical/logical
resources or operational resources, and at least one field
specifying entitlement assigned to the one or more of
physical/logical resources or operational resources accessed
by one or more objects, wherein the one or more entitlement
vectors are specified as one or more user-predetermined
rights assigning entitlement of the one or more objects to a
predetermined percentage of the one or more of physical/
logical resources or operational resources comprises:
one or more entitlement vectors including at least one
field specifying one or more expected capabilities
enabling access to the one or more objects.
3. The information handling apparatus according to claim
1 wherein the physical/logical resources include:
at least one of physical or logical instances of:
processors, central processing units (CPUs), virtual
machines, graphics hardware, network controllers,
memory, memory management, hardware, micro-
architecture, sound cards, video cards, network inter-
faces, instruction set architecture (ISA), library calls,
library functions, software objects, compilers, or
operating systems.
4. The information handling apparatus according to claim
1 wherein the operational resources include:
at least one of:
power, voltage, current, electrons, frequency, execution
cycles, battery consumption, battery life, constraints,
temperature, or measurable phenomena.

10

15

20

25

30

35

40

45

50

55

34

5. The information handling apparatus according to claim

1 further comprising:

ascertainment logic configured to determine which of the
one or more of physical/logical resources or operational
resources are used by the one or more objects, and
configured to set the one or more entitlement vectors to
indicate correspondence between the one or more of
physical/logical resources or operational resources and
the one or more objects.

6. The information handling apparatus according to claim

1 further comprising:

ascertainment logic configured to determine which of the
one or more of physical/logical resources or operational
resources are used by the one or more objects, and
configured to set the one or more entitlement vectors to
indicate correspondence between the one or more of
physical/logical resources or operational resources and
capabilities allocated to the one or more objects.

7. The information handling apparatus according to claim

1 further comprising:

ascertainment logic configured to determine which of the
one or more of physical/logical resources or operational
resources have capabilities to be used by the one or
more objects, and configured to set the one or more
entitlement vectors to indicate correspondence between
the one or more of physical/logical resources or opera-
tional resources and the capabilities allocated to the one
or more objects.

8. The information handling apparatus according to claim
wherein the one or more hint instructions include:

one or more hint instructions configured to activate the
one or more entitlement vectors as a request for
resources for application to one or more hardware
components associated with the at least one processor
which uses the one or more entitlement vectors for
scheduling of the one or more objects.

9. The information handling apparatus according to claim
wherein the one or more hint instructions include:

one or more hint instructions configured to power down
one or more hardware components associated with the
at least one processor in a condition that the one or
more entitlement vectors indicate that the one or more
hardware components is not used by the one or more
objects.

10. The information handling apparatus according to

claim 1 wherein the one or more hint instructions include:

one or more hint instructions configured as a predictive
hint designating resources which are predicted to be
used by the one or more objects based at least partly on
branch prediction.

11. The information handling apparatus according to

claim 1 further comprising:

resource allocation logic configured to dynamically
modify the one or more entitlement vectors according
to usage of resources by the one or more objects,
wherein the one or more hint instructions activate at
least one of the one or more entitlement vectors.

12. The information handling apparatus according to

claim 1 further comprising:

a scheduler configured to schedule a process of one or
more processes for execution based on entitlement
specified by the one or more entitlement vectors.

US 9,471,373 B2

35

13. The information handling apparatus according to
claim 1 further comprising:

a scheduler configured to schedule a thread of one or more
threads in a multi-threaded environment based on
entitlement specified by the one or more entitlement
vectors.

14. The information handling apparatus according to
claim 1 wherein the instruction issue logic configured to
issue one or more instructions in an instruction set that
includes one or more hint instructions hint instructions
comprises:

instruction issue logic configured to issue one or more
instructions in an instruction set that includes one or
more hint instructions including at least one hint
instruction configured to execute directly in hardware
on the at least one processor to instruct the at least one
processor on determining operational resources for
executing the one or more objects and scheduling the
usage of the one or more of physical/logical resources
or operational resources.

15. The information handling apparatus according to

claim 1 wherein the one or more hint instructions include:
one or more hint instructions configured to power down
hardware in response to a condition that the one or
more entitlement vectors indicate that the hardware is

not used by the one or more objects.

16. The information handling apparatus according to
claim 1 wherein the one or more hint instructions include:

one or more hint instructions configured to power down
floating point hardware in response to a condition that
the one or more entitlement vectors indicate that the
one or more objects do not include floating point
operations.

17. The information handling apparatus according to
claim 1 wherein the one or more hint instructions include:

one or more hint instructions configured to set power
levels applied to the hardware based at least in part on
at least one of the monitoring logic determining a
power demand for the one or more objects and at least
one indication of power demand in the one or more
entitlement vectors.

18. The information handling apparatus according to
claim 1 wherein:

at least one of the one or more library routines is config-
ured to organize the one or more objects to perform a
plurality of tasks in a queue and upon completion of a
task to request a next task from the queue until all tasks
have completed and an object of the one or more
objects at least one of terminates or becomes inactive
until one or more additional tasks are available; and

at least one of the one or more library routines is config-
ured to dynamically update a number of objects based
on a number of waiting tasks.

19. The information handling apparatus according to

claim 1 wherein:

at least one of the one or more library routines is config-
ured to organize the one or more objects to perform a
plurality of tasks in a queue and upon completion of a
task to request a next task from the queue until all tasks
have completed and an object of the one or more
objects at least one of terminates or becomes inactive
until one or more additional tasks are available; and

at least one of the one or more library routines is config-
ured to determine whether a power level is below a
predetermined threshold and respond by limiting a
number of objects.

10

15

20

25

30

35

40

45

50

55

60

65

36

20. An information handling apparatus comprising:
at least one processor including at least:

one or more libraries including one or more library
routines associated with one or more functions or
components configured to handle the one or more
objects;

receiving logic configured to receive at least one hint
instruction including one or more entitlement vectors
including at least one field specifying one or more of
physical/logical resources or operational resources,
and at least one field specifying entitlement assigned
to the one or more of physical/logical resources or
operational resources accessed by one or more
objects, wherein the one or more entitlement vectors
are specified as one or more user-predetermined
rights assigning entitlement of the one or more
objects to a predetermined percentage of the one or
more of physical/logical resources or operational
resources, wherein at least one of the one or more
library routines configured to activate at least one of
the one or more entitlement vectors, compare the at
least one of the one or more entitlement vectors with
respect to usage of the one or more of physical/
logical resources or operational resources, and
schedule the one or more objects from a highest
priority to a lowest priority based at least in part on
the comparison;

monitoring logic configured to monitor usage of the
one or more of physical/logical resources or opera-
tional resources; and

resource allocation logic configured to allocate the one
or more of physical/logical resources or operational
resources to the one or more objects based on
entitlement as specified by the one or more entitle-
ment vectors and configured to dynamically modify
the one or more entitlement vectors according to
usage of the one or more of physical/logical
resources or operational resources by the one or
more objects.

21. The information handling apparatus according to
claim 20 wherein:

the physical/logic resources include one or more of physi-

cal or logical instances of:

processors, central processing units (CPUs), virtual
machines, graphics hardware, network controllers,
memory, memory management, hardware, micro-
architecture, sound cards, video cards, network inter-
faces, instruction set architecture (ISA), library calls,
library functions, software objects, compilers, or
operating systems; and

the operational resources include one or more of:

power, voltage, current, electrons, frequency, execution
cycles, battery consumption, battery life, constraints,
temperature, or measurable phenomena.

22. The information handling apparatus according to
claim 20 wherein the one or more entitlement vectors
including at least one field specifying one or more of
physical/logical resources or operational resources, and at
least one field specifying entitlement assigned to the one or
more of physical/logical resources or operational resources
accessed by one or more objects, wherein the one or more
entitlement vectors are specified as one or more user-
predetermined rights assigning entitlement of the one or
more objects to a predetermined percentage of the one or
more of physical/logical resources or operational resources
comprises:

US 9,471,373 B2

37

one or more entitlement vectors including at least one
field specifying one or more expected capabilities
enabling access to the one or more objects.

23. The information handling apparatus according to

claim 20 further comprising:

ascertainment logic configured to determine which of the
one or more of physical/logical resources or operational
resources are used by the one or more objects, and
configured to set the one or more entitlement vectors to
indicate correspondence between the one or more of
physical/logical resources or operational resources and
the one or more objects.

24. The information handling apparatus according to

claim 20 further comprising:

ascertainment logic configured to determine which of the
one or more of physical/logical resources or operational
resources have capabilities to be used by the one or
more objects, and configured to set the one or more
entitlement vectors to indicate correspondence between
the one or more of physical/logical resources or opera-
tional resources and the capabilities allocated to the one
or more objects.

25. The information handling apparatus according to

claim 20 wherein the one or more hint instructions include:
one or more hint instructions configured to activate the
one or more entitlement vectors as a request for
resources for application to one or more hardware
components associated with the at least one processor
which uses the one or more entitlement vectors for
scheduling of the one or more objects.

26. The information handling apparatus according to

claim 20 wherein the one or more hint instructions include:

one or more hint instructions configured to power down

one or more hardware components associated with the

at least one processor in a condition that the one or

more entitlement vectors indicate that the one or more

hardware components is not used by the one or more
objects.

27. The information handling apparatus according to

claim 20 wherein the one or more hint instructions include:
one or more hint instructions configured as a predictive
hint designating resources which are predicted to be
used by the one or more objects based at least partly on
branch prediction.

28. The information handling apparatus according to

claim 20 further comprising:

a scheduler configured to schedule a process of one or
more processes for execution based on entitlement
specified by the one or more entitlement vectors.

29. The information handling apparatus according to

claim 20 further comprising:

a scheduler configured to schedule a thread of one or more
threads in a multi-threaded environment based on
entitlement specified by the one or more entitlement
vectors.

30. The information handling apparatus according to

claim 20 wherein:

at least one of the one or more library routines is config-
ured to organize the one or more objects to perform a
plurality of tasks in a queue and upon completion of a
task to request a next task from the queue until all tasks
have completed and an object of the one or more
objects at least one of terminates or becomes inactive
until one or more additional tasks are available; and

at least one of the one or more library routines is config-
ured to dynamically update a number of objects based
on a number of waiting tasks.

10

20

30

40

45

50

55

60

38

31. The information handling apparatus according to
claim 20 wherein:
at least one of the one or more library routines is config-
ured to organize the one or more objects to perform a
plurality of tasks in a queue and upon completion of a
task to request a next task from the queue until all tasks
have completed and an object of the one or more
objects at least one of terminates or becomes inactive
until one or more additional tasks are available; and
at least one of the one or more library routines is config-
ured to determine whether a power level is below a
predetermined threshold and respond by limiting a
number of objects.
32. An information handling apparatus comprising:
at least one processor including at least:
one or more libraries including one or more library
routines associated with one or more functions or
components configured to handle the one or more
objects;
resource allocation logic configured to allocate one or
more of physical/logical resources or operational
resources to the one or more objects based on
entitlement as specified by one or more entitlement
vectors including at least one field specifying one or
more of physical/logical resources or operational
resources, and at least one field specifying entitle-
ment assigned to the one or more of physical/logical
resources or operational resources accessed by one
or more objects, wherein the one or more entitlement
vectors are specified as one or more user-predeter-
mined rights assigning entitlement of the one or
more objects to a predetermined percentage of the
one or more of physical/logical resources or opera-
tional resources, the resource allocation logic further
configured to dynamically modify the one or more
entitlement vectors according to usage of the one or
more of physical/logical resources or operational
resources by the one or more objects; and
hint logic configured to activate the one or more
entitlement vectors based at least in part on the
allocation of the one or more of physical/logical
resources or operational resources to the one or more
objects and at least in part by operational character-
istics of the one or more objects, the hint logic
further configured to instruct the at least one proces-
sor on determining operational resources for execut-
ing the one or more objects, wherein:
at least one of the one or more library routines is
configured to organize the one or more objects to
perform a plurality of tasks in a queue and upon
completion of a task to request a next task from the
queue until all tasks have completed and an object of
the one or more objects at least one of terminates or
becomes inactive until one or more additional tasks
are available; and
at least one of the one or more library routines is
configured to dynamically update a number of
objects based on a number of waiting tasks.
33. The information handling apparatus according to
claim 32 wherein:
the physical/logic resources include one or more of physi-
cal or logical instances of:
processors, central processing units (CPUs), virtual
machines, graphics hardware, network controllers,
memory, memory management, hardware, micro-
architecture, sound cards, video cards, network inter-

US 9,471,373 B2

39

faces, instruction set architecture (ISA), library calls,
library functions, software objects, compilers, or
operating systems; and
the operational resources include one or more of:
power, voltage, current, electrons, frequency, execution
cycles, battery consumption, battery life, constraints,
temperature, or measurable phenomena.
34. The information handling apparatus according to
claim 32 further comprising:
monitoring logic configured to monitor usage of the one
or more of physical/logical resources or operational
resources.
35. The information handling apparatus according to
claim 32 further comprising:
monitoring logic configured to monitor usage of one or
more operational resources during execution of the one
or more objects, wherein:
the hint logic is configured to set the one or more
entitlement vectors based at least in part on the moni-
tored usage of the one or more operational resources
during execution of the one or more objects and at least
in part by antecedent one or more entitlement vectors.
36. The information handling apparatus according to
claim 32 further comprising:
monitoring logic configured to monitor usage of one or
more operational resources during execution of the one
or more objects, wherein:
the hint logic is configured to set the one or more
entitlement vectors based at least in part on the moni-
tored usage of the one or more operational resources
during execution of the one or more objects and at least
in part by capabilities set by an operating system
specifying allowable resource usage.

15

20

25

30

40

37. The information handling apparatus according to
claim 32 further comprising:
monitoring logic configured to monitor usage of one or
more operational resources during execution of the one
or more objects, wherein:
the hint logic is configured to set the one or more
entitlement vectors based at least in part on the moni-
tored usage of the one or more operational resources
during execution of the one or more objects and at least
in part by monitored system performance.
38. The information handling apparatus according to
claim 32 further comprising:
monitoring logic configured to monitor usage of one or
more operational resources during execution of the one
or more objects, wherein:
the hint logic is configured to set the one or more
entitlement vectors based at least in part on the moni-
tored usage of the one or more operational resources
during execution of the one or more objects and at least
in part by a user override.
39. The information handling apparatus according to
claim 32 further comprising:
monitoring logic configured to monitor usage of one or
more operational resources during execution of the one
or more objects, wherein:
the hint logic is configured to set the one or more
entitlement vectors based at least in part on the moni-
tored usage of the one or more operational resources
during execution of the one or more objects and at least
in part by one or more antecedent hint instructions.

#* #* #* #* #*

